Coxeter 群的反射表示和 Coxeter 图的同源性

Pub Date : 2023-12-07 DOI:10.1007/s10468-023-10242-w
Hongsheng Hu
{"title":"Coxeter 群的反射表示和 Coxeter 图的同源性","authors":"Hongsheng Hu","doi":"10.1007/s10468-023-10242-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study and classify a class of representations (called generalized geometric representations) of a Coxeter group of finite rank. These representations can be viewed as a natural generalization of the geometric representation. The classification is achieved by using characters of the integral homology group of certain graphs closely related to the Coxeter graph. On this basis, we also provide an explicit description of those representations on which the defining generators of the Coxeter group act by reflections.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reflection Representations of Coxeter Groups and Homology of Coxeter Graphs\",\"authors\":\"Hongsheng Hu\",\"doi\":\"10.1007/s10468-023-10242-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study and classify a class of representations (called generalized geometric representations) of a Coxeter group of finite rank. These representations can be viewed as a natural generalization of the geometric representation. The classification is achieved by using characters of the integral homology group of certain graphs closely related to the Coxeter graph. On this basis, we also provide an explicit description of those representations on which the defining generators of the Coxeter group act by reflections.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10242-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10242-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了有限秩的考斯特群的一类表示(称为广义几何表示),并对其进行了分类。这些表示可视为几何表示的自然广义化。这种分类是通过使用与考克斯特图密切相关的某些图的积分同调群的特征来实现的。在此基础上,我们还对考克斯特群的定义发电机通过反射作用的那些表示进行了明确描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Reflection Representations of Coxeter Groups and Homology of Coxeter Graphs

We study and classify a class of representations (called generalized geometric representations) of a Coxeter group of finite rank. These representations can be viewed as a natural generalization of the geometric representation. The classification is achieved by using characters of the integral homology group of certain graphs closely related to the Coxeter graph. On this basis, we also provide an explicit description of those representations on which the defining generators of the Coxeter group act by reflections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信