基于工程外泌体的肿瘤转移和复发治疗策略

IF 10.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Min Deng , Shuang Wu , Peizheng Huang , Yun Liu , Chong Li , Ji Zheng
{"title":"基于工程外泌体的肿瘤转移和复发治疗策略","authors":"Min Deng ,&nbsp;Shuang Wu ,&nbsp;Peizheng Huang ,&nbsp;Yun Liu ,&nbsp;Chong Li ,&nbsp;Ji Zheng","doi":"10.1016/j.ajps.2023.100870","DOIUrl":null,"url":null,"abstract":"<div><p>Metastasis-associated processes are the predominant instigator of fatalities linked to cancer, wherein the pivotal role of circulating tumor cells lies in the resurgence of malignant growth. In recent epochs, exosomes, constituents of the extracellular vesicle cohort, have garnered attention within the field of tumor theranostics owing to their inherent attributes encompassing biocompatibility, modifiability, payload capacity, stability, and therapeutic suitability. Nonetheless, the rudimentary functionalities and limited efficacy of unmodified exosomes curtail their prospective utility. In an effort to surmount these shortcomings, intricate methodologies amalgamating nanotechnology with genetic manipulation, chemotherapy, immunotherapy, and optical intervention present themselves as enhanced avenues to surveil and intercede in tumor metastasis and relapse. This review delves into the manifold techniques currently employed to engineer exosomes, with a specific focus on elucidating the interplay between exosomes and the metastatic cascade, alongside the implementation of tailored exosomes in abating tumor metastasis and recurrence. This review not only advances comprehension of the evolving landscape within this domain but also steers the trajectory of forthcoming investigations.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1818087623000971/pdfft?md5=66062094b1be145e4db99ecf53ffa7c6&pid=1-s2.0-S1818087623000971-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Engineered exosomes-based theranostic strategy for tumor metastasis and recurrence\",\"authors\":\"Min Deng ,&nbsp;Shuang Wu ,&nbsp;Peizheng Huang ,&nbsp;Yun Liu ,&nbsp;Chong Li ,&nbsp;Ji Zheng\",\"doi\":\"10.1016/j.ajps.2023.100870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metastasis-associated processes are the predominant instigator of fatalities linked to cancer, wherein the pivotal role of circulating tumor cells lies in the resurgence of malignant growth. In recent epochs, exosomes, constituents of the extracellular vesicle cohort, have garnered attention within the field of tumor theranostics owing to their inherent attributes encompassing biocompatibility, modifiability, payload capacity, stability, and therapeutic suitability. Nonetheless, the rudimentary functionalities and limited efficacy of unmodified exosomes curtail their prospective utility. In an effort to surmount these shortcomings, intricate methodologies amalgamating nanotechnology with genetic manipulation, chemotherapy, immunotherapy, and optical intervention present themselves as enhanced avenues to surveil and intercede in tumor metastasis and relapse. This review delves into the manifold techniques currently employed to engineer exosomes, with a specific focus on elucidating the interplay between exosomes and the metastatic cascade, alongside the implementation of tailored exosomes in abating tumor metastasis and recurrence. This review not only advances comprehension of the evolving landscape within this domain but also steers the trajectory of forthcoming investigations.</p></div>\",\"PeriodicalId\":8539,\"journal\":{\"name\":\"Asian Journal of Pharmaceutical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1818087623000971/pdfft?md5=66062094b1be145e4db99ecf53ffa7c6&pid=1-s2.0-S1818087623000971-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1818087623000971\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087623000971","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

转移相关过程是与癌症相关的死亡的主要诱因,其中循环肿瘤细胞的关键作用在于恶性生长的复苏。近年来,外泌体作为细胞外囊泡群的组成部分,由于其固有的生物相容性、可修饰性、有效载荷能力、稳定性和治疗适应性等特性,在肿瘤治疗领域引起了人们的关注。然而,未经修饰的外泌体的基本功能和有限的功效限制了它们的潜在效用。为了克服这些缺点,将纳米技术与基因操作、化疗、免疫治疗和光学干预相结合的复杂方法成为监测和干预肿瘤转移和复发的增强途径。本综述深入研究了目前用于外泌体工程的多种技术,重点阐述了外泌体与转移级联之间的相互作用,以及定制外泌体在减少肿瘤转移和复发方面的实施。这篇综述不仅促进了对这一领域内不断发展的景观的理解,而且指导了即将进行的调查的轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineered exosomes-based theranostic strategy for tumor metastasis and recurrence

Engineered exosomes-based theranostic strategy for tumor metastasis and recurrence

Engineered exosomes-based theranostic strategy for tumor metastasis and recurrence

Metastasis-associated processes are the predominant instigator of fatalities linked to cancer, wherein the pivotal role of circulating tumor cells lies in the resurgence of malignant growth. In recent epochs, exosomes, constituents of the extracellular vesicle cohort, have garnered attention within the field of tumor theranostics owing to their inherent attributes encompassing biocompatibility, modifiability, payload capacity, stability, and therapeutic suitability. Nonetheless, the rudimentary functionalities and limited efficacy of unmodified exosomes curtail their prospective utility. In an effort to surmount these shortcomings, intricate methodologies amalgamating nanotechnology with genetic manipulation, chemotherapy, immunotherapy, and optical intervention present themselves as enhanced avenues to surveil and intercede in tumor metastasis and relapse. This review delves into the manifold techniques currently employed to engineer exosomes, with a specific focus on elucidating the interplay between exosomes and the metastatic cascade, alongside the implementation of tailored exosomes in abating tumor metastasis and recurrence. This review not only advances comprehension of the evolving landscape within this domain but also steers the trajectory of forthcoming investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Pharmaceutical Sciences
Asian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
18.30
自引率
2.90%
发文量
11
审稿时长
14 days
期刊介绍: The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信