基于金属-半导体-金属结构的光发射器或探测器器件中载流子注入的数值分析

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abolfazl Mahmoodpoor , Sergey Makarov
{"title":"基于金属-半导体-金属结构的光发射器或探测器器件中载流子注入的数值分析","authors":"Abolfazl Mahmoodpoor ,&nbsp;Sergey Makarov","doi":"10.1016/j.photonics.2023.101213","DOIUrl":null,"url":null,"abstract":"<div><p>Modern metal-semiconductor-metal nano- and micro-structures exhibit unique properties related to both light emission and detection. Here we develop a novel optimized numerical model to calculate charge carrier density inside a n-type semiconductor micro-crystal that is sandwiched between two Schottky contacts<span>. We use drift-diffusion equations and finite difference methods<span> and utilize the Scharfetter-Gummel discretization technique. We demonstrate that the concentration of majority charge carriers in the semiconductor can be reduced below the level observed at zero applied bias by surpassing the current density of minority charge carriers beyond that of the majority charge carriers. Subsequently, minority charge carrier concentration increases and becomes the dominant charge carrier inside the semiconductor at high applied bias. In addition, we provide evidence that the open circuit voltage of a semiconductor under illumination occurs at the point where the minority-majority current densities intersect. By adjusting the Schottky contact barrier, the crossing potential between minority and majority carriers can be controlled, thereby allowing for manipulation of the open circuit voltage. This is an important factor in determining the density of trap states in the semiconductor and designing an open circuit voltage photodetector. We verify our results using COMSOL Multiphysics software and show that our numerical approach is found to be more time-efficient than the methods employed by COMSOL Multiphysics.</span></span></p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101213"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of charge carriers injection in a light emitter or detector device based on a metal-semiconductor-metal structure\",\"authors\":\"Abolfazl Mahmoodpoor ,&nbsp;Sergey Makarov\",\"doi\":\"10.1016/j.photonics.2023.101213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modern metal-semiconductor-metal nano- and micro-structures exhibit unique properties related to both light emission and detection. Here we develop a novel optimized numerical model to calculate charge carrier density inside a n-type semiconductor micro-crystal that is sandwiched between two Schottky contacts<span>. We use drift-diffusion equations and finite difference methods<span> and utilize the Scharfetter-Gummel discretization technique. We demonstrate that the concentration of majority charge carriers in the semiconductor can be reduced below the level observed at zero applied bias by surpassing the current density of minority charge carriers beyond that of the majority charge carriers. Subsequently, minority charge carrier concentration increases and becomes the dominant charge carrier inside the semiconductor at high applied bias. In addition, we provide evidence that the open circuit voltage of a semiconductor under illumination occurs at the point where the minority-majority current densities intersect. By adjusting the Schottky contact barrier, the crossing potential between minority and majority carriers can be controlled, thereby allowing for manipulation of the open circuit voltage. This is an important factor in determining the density of trap states in the semiconductor and designing an open circuit voltage photodetector. We verify our results using COMSOL Multiphysics software and show that our numerical approach is found to be more time-efficient than the methods employed by COMSOL Multiphysics.</span></span></p></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"58 \",\"pages\":\"Article 101213\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441023001074\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441023001074","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

现代金属-半导体-金属纳米和微结构在发光和探测方面表现出独特的特性。在这里,我们开发了一种新的优化数值模型来计算夹在两个肖特基触点之间的n型半导体微晶体内的载流子密度。我们使用了漂移扩散方程和有限差分方法,并利用了Scharfetter-Gummel离散化技术。我们证明,通过超过多数载流子的电流密度,可以将半导体中多数载流子的浓度降低到零偏压下观察到的水平以下。随后,少数载流子浓度增加,并在高施加偏压下成为半导体内部的主导载流子。此外,我们提供的证据表明,半导体在照明下的开路电压发生在少数和多数电流密度相交的点上。通过调节肖特基接触势垒,可以控制少数载流子和多数载流子之间的交叉电位,从而允许操纵开路电压。这是确定半导体中阱态密度和设计开路电压光电探测器的一个重要因素。我们使用COMSOL Multiphysics软件验证了我们的结果,并表明我们的数值方法比COMSOL Multiphysics采用的方法更省时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of charge carriers injection in a light emitter or detector device based on a metal-semiconductor-metal structure

Modern metal-semiconductor-metal nano- and micro-structures exhibit unique properties related to both light emission and detection. Here we develop a novel optimized numerical model to calculate charge carrier density inside a n-type semiconductor micro-crystal that is sandwiched between two Schottky contacts. We use drift-diffusion equations and finite difference methods and utilize the Scharfetter-Gummel discretization technique. We demonstrate that the concentration of majority charge carriers in the semiconductor can be reduced below the level observed at zero applied bias by surpassing the current density of minority charge carriers beyond that of the majority charge carriers. Subsequently, minority charge carrier concentration increases and becomes the dominant charge carrier inside the semiconductor at high applied bias. In addition, we provide evidence that the open circuit voltage of a semiconductor under illumination occurs at the point where the minority-majority current densities intersect. By adjusting the Schottky contact barrier, the crossing potential between minority and majority carriers can be controlled, thereby allowing for manipulation of the open circuit voltage. This is an important factor in determining the density of trap states in the semiconductor and designing an open circuit voltage photodetector. We verify our results using COMSOL Multiphysics software and show that our numerical approach is found to be more time-efficient than the methods employed by COMSOL Multiphysics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信