{"title":"塞万湖温度场和水流场的现今结构","authors":"S. A. Poddubnyi, B. K. Gabrielyan, A. I. Tsvetkov","doi":"10.1134/s0097807823700161","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Long-term features of the vertical and horizontal structure of water temperature field in Lake Sevan are discussed. It is shown that the climate warming has led to an increase in epilimnion temperature in Bol’shoi Sevan in July by 2.0‒3.0°C. The increase in water temperature in hypolimnion was not greater than 1.1°C. In autumn (October), the epilimnion became 1.2°C warmer, while hypolimnion temperature practically has not changed on the average over years. Temperature fields were used to calculate the density currents in summer and autumn periods. A dominating cyclonic water circulation was revealed all over the lake, confirmed by chlorophyll distribution by satellite image data. In the case of large horizontal gradients of water density, the flow velocity can reach 50 cm/s. Autonomous buoy stations revealed a wide range of water temperature variations due to internal waves of different nature. The reversible vertical mixing of water mass by internal waves plays an important role in the distribution of nutrients and plankton within the water mass. The water level rise by ~3 m, unlike it drop by 1981 by 18.48, has not caused any significant changes in lake hydrological regime.</p>","PeriodicalId":49368,"journal":{"name":"Water Resources","volume":"5 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Present-Day Structure of the Temperature and Current Fields in Lake Sevan\",\"authors\":\"S. A. Poddubnyi, B. K. Gabrielyan, A. I. Tsvetkov\",\"doi\":\"10.1134/s0097807823700161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Long-term features of the vertical and horizontal structure of water temperature field in Lake Sevan are discussed. It is shown that the climate warming has led to an increase in epilimnion temperature in Bol’shoi Sevan in July by 2.0‒3.0°C. The increase in water temperature in hypolimnion was not greater than 1.1°C. In autumn (October), the epilimnion became 1.2°C warmer, while hypolimnion temperature practically has not changed on the average over years. Temperature fields were used to calculate the density currents in summer and autumn periods. A dominating cyclonic water circulation was revealed all over the lake, confirmed by chlorophyll distribution by satellite image data. In the case of large horizontal gradients of water density, the flow velocity can reach 50 cm/s. Autonomous buoy stations revealed a wide range of water temperature variations due to internal waves of different nature. The reversible vertical mixing of water mass by internal waves plays an important role in the distribution of nutrients and plankton within the water mass. The water level rise by ~3 m, unlike it drop by 1981 by 18.48, has not caused any significant changes in lake hydrological regime.</p>\",\"PeriodicalId\":49368,\"journal\":{\"name\":\"Water Resources\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1134/s0097807823700161\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1134/s0097807823700161","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
The Present-Day Structure of the Temperature and Current Fields in Lake Sevan
Abstract
Long-term features of the vertical and horizontal structure of water temperature field in Lake Sevan are discussed. It is shown that the climate warming has led to an increase in epilimnion temperature in Bol’shoi Sevan in July by 2.0‒3.0°C. The increase in water temperature in hypolimnion was not greater than 1.1°C. In autumn (October), the epilimnion became 1.2°C warmer, while hypolimnion temperature practically has not changed on the average over years. Temperature fields were used to calculate the density currents in summer and autumn periods. A dominating cyclonic water circulation was revealed all over the lake, confirmed by chlorophyll distribution by satellite image data. In the case of large horizontal gradients of water density, the flow velocity can reach 50 cm/s. Autonomous buoy stations revealed a wide range of water temperature variations due to internal waves of different nature. The reversible vertical mixing of water mass by internal waves plays an important role in the distribution of nutrients and plankton within the water mass. The water level rise by ~3 m, unlike it drop by 1981 by 18.48, has not caused any significant changes in lake hydrological regime.
期刊介绍:
Water Resources is a journal that publishes articles on the assessment of water resources, integrated water resource use, water quality, and environmental protection. The journal covers many areas of research, including prediction of variations in continental water resources and regime; hydrophysical, hydrodynamic, hydrochemical and hydrobiological processes, environmental aspects of water quality and protection; economic, social, and legal aspects of water-resource development; and experimental methods of studies.