Valiollah Keshavarz, Maryam Kazemi, Bahman Khalvati, Ali Dehshahri, Hossein Sadeghpour
{"title":"自组装纳米颗粒形成衍生物的糊精共轭聚亚胺含有氨基甲酸乙酯键增强传递白介素-12质粒","authors":"Valiollah Keshavarz, Maryam Kazemi, Bahman Khalvati, Ali Dehshahri, Hossein Sadeghpour","doi":"10.2174/0115734137275215231113100147","DOIUrl":null,"url":null,"abstract":"Background and Objective: In the present investigation, low molecular weight polyethylenimine (LMW PEI, 1.8 kDa PEI) was conjugated to dextrin via urethane units and tested to transfer plasmid encoding interleukin-12 (IL-12) plasmid. Although high molecular weight PEI (HMW PEI, 25 kDa PEI) has shown substantial transfection efficiency, its wide application has been hampered due to considerable cytotoxicity. Therefore, LMW PEI with low toxic effects was used as the core of our gene transfer construct. Methods: LMW PEI was conjugated to dextrin via urethane units to improve its biophysical characteristics as well as cytotoxic effects. The conjugates were characterized in terms of buffering capacity, plasmid DNA condensation ability, particle size, and zeta potential as well as protection against enzymatic degradation. In Vitro experiments were carried out to evaluate the ability of these LMW PEI conjugates to transfer plasmid encoding human interleukin-12 (hIL- 12) to the cells. The MTT assay was performed to measure the cell-induced toxicity of the conjugates. Results: The results of our study demonstrated that the PEI derivatives with higher amounts of amine content (i.e. higher conjugation degrees) have considerable buffering capacity and plasmid condensation ability. These conjugates could condense plasmid DNA at Carrier to Plasmid ratios (C/P) ≥2 and form polyplexes at the size range of 120-165 nm while their zeta potential was around 5.5-8.5 mV. The results of transfection efficiency demonstrated that the level of IL- 12 production increased by 2-3 folds compared with unmodified LMW PEI while the level of cytotoxicity was not higher than 20%. Conclusion: The strategy used in this study shows a promising way to prepare gene carriers with high transfection efficiency and low toxicity.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"63 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Assembled Nanoparticle-Forming Derivatives of Dextrin-Conjugated Polyethylenimine Containing Urethane Bonds for Enhanced Delivery of Interleukin-12 Plasmid\",\"authors\":\"Valiollah Keshavarz, Maryam Kazemi, Bahman Khalvati, Ali Dehshahri, Hossein Sadeghpour\",\"doi\":\"10.2174/0115734137275215231113100147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and Objective: In the present investigation, low molecular weight polyethylenimine (LMW PEI, 1.8 kDa PEI) was conjugated to dextrin via urethane units and tested to transfer plasmid encoding interleukin-12 (IL-12) plasmid. Although high molecular weight PEI (HMW PEI, 25 kDa PEI) has shown substantial transfection efficiency, its wide application has been hampered due to considerable cytotoxicity. Therefore, LMW PEI with low toxic effects was used as the core of our gene transfer construct. Methods: LMW PEI was conjugated to dextrin via urethane units to improve its biophysical characteristics as well as cytotoxic effects. The conjugates were characterized in terms of buffering capacity, plasmid DNA condensation ability, particle size, and zeta potential as well as protection against enzymatic degradation. In Vitro experiments were carried out to evaluate the ability of these LMW PEI conjugates to transfer plasmid encoding human interleukin-12 (hIL- 12) to the cells. The MTT assay was performed to measure the cell-induced toxicity of the conjugates. Results: The results of our study demonstrated that the PEI derivatives with higher amounts of amine content (i.e. higher conjugation degrees) have considerable buffering capacity and plasmid condensation ability. These conjugates could condense plasmid DNA at Carrier to Plasmid ratios (C/P) ≥2 and form polyplexes at the size range of 120-165 nm while their zeta potential was around 5.5-8.5 mV. The results of transfection efficiency demonstrated that the level of IL- 12 production increased by 2-3 folds compared with unmodified LMW PEI while the level of cytotoxicity was not higher than 20%. Conclusion: The strategy used in this study shows a promising way to prepare gene carriers with high transfection efficiency and low toxicity.\",\"PeriodicalId\":10827,\"journal\":{\"name\":\"Current Nanoscience\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanoscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734137275215231113100147\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0115734137275215231113100147","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Self-Assembled Nanoparticle-Forming Derivatives of Dextrin-Conjugated Polyethylenimine Containing Urethane Bonds for Enhanced Delivery of Interleukin-12 Plasmid
Background and Objective: In the present investigation, low molecular weight polyethylenimine (LMW PEI, 1.8 kDa PEI) was conjugated to dextrin via urethane units and tested to transfer plasmid encoding interleukin-12 (IL-12) plasmid. Although high molecular weight PEI (HMW PEI, 25 kDa PEI) has shown substantial transfection efficiency, its wide application has been hampered due to considerable cytotoxicity. Therefore, LMW PEI with low toxic effects was used as the core of our gene transfer construct. Methods: LMW PEI was conjugated to dextrin via urethane units to improve its biophysical characteristics as well as cytotoxic effects. The conjugates were characterized in terms of buffering capacity, plasmid DNA condensation ability, particle size, and zeta potential as well as protection against enzymatic degradation. In Vitro experiments were carried out to evaluate the ability of these LMW PEI conjugates to transfer plasmid encoding human interleukin-12 (hIL- 12) to the cells. The MTT assay was performed to measure the cell-induced toxicity of the conjugates. Results: The results of our study demonstrated that the PEI derivatives with higher amounts of amine content (i.e. higher conjugation degrees) have considerable buffering capacity and plasmid condensation ability. These conjugates could condense plasmid DNA at Carrier to Plasmid ratios (C/P) ≥2 and form polyplexes at the size range of 120-165 nm while their zeta potential was around 5.5-8.5 mV. The results of transfection efficiency demonstrated that the level of IL- 12 production increased by 2-3 folds compared with unmodified LMW PEI while the level of cytotoxicity was not higher than 20%. Conclusion: The strategy used in this study shows a promising way to prepare gene carriers with high transfection efficiency and low toxicity.
期刊介绍:
Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine.
Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology:
Nanoelectronics and photonics
Advanced Nanomaterials
Nanofabrication and measurement
Nanobiotechnology and nanomedicine
Nanotechnology for energy
Sensors and actuator
Computational nanoscience and technology.