Martin Bays, Omer Ben-Neria, Itay Kaplan, Pierre Simon
{"title":"在大的外部可定义集合上","authors":"Martin Bays, Omer Ben-Neria, Itay Kaplan, Pierre Simon","doi":"10.1017/s1474748023000464","DOIUrl":null,"url":null,"abstract":"We study cofinal systems of finite subsets of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000464_inline1.png\" /> <jats:tex-math> $\\omega _1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that while such systems can be NIP, they cannot be defined in an NIP structure. We deduce a positive answer to a question of Chernikov and Simon from 2013: In an NIP theory, any uncountable externally definable set contains an infinite definable subset. A similar result holds for larger cardinals.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"23 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON LARGE EXTERNALLY DEFINABLE SETS IN NIP\",\"authors\":\"Martin Bays, Omer Ben-Neria, Itay Kaplan, Pierre Simon\",\"doi\":\"10.1017/s1474748023000464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study cofinal systems of finite subsets of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000464_inline1.png\\\" /> <jats:tex-math> $\\\\omega _1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that while such systems can be NIP, they cannot be defined in an NIP structure. We deduce a positive answer to a question of Chernikov and Simon from 2013: In an NIP theory, any uncountable externally definable set contains an infinite definable subset. A similar result holds for larger cardinals.\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748023000464\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748023000464","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study cofinal systems of finite subsets of $\omega _1$ . We show that while such systems can be NIP, they cannot be defined in an NIP structure. We deduce a positive answer to a question of Chernikov and Simon from 2013: In an NIP theory, any uncountable externally definable set contains an infinite definable subset. A similar result holds for larger cardinals.
期刊介绍:
The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.