其基本原理是:同分异构体是控制糖基(生物)表面活性剂行为的蓝图

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Adrian Sanchez-Fernandez , Jia-Fei Poon
{"title":"其基本原理是:同分异构体是控制糖基(生物)表面活性剂行为的蓝图","authors":"Adrian Sanchez-Fernandez ,&nbsp;Jia-Fei Poon","doi":"10.1016/j.cocis.2023.101768","DOIUrl":null,"url":null,"abstract":"<div><p>Surfactants are ubiquitous in formulated products and technologies. As one of the most important commodity chemicals, their remarkable consumption leads to the necessity of finding sustainable alternatives. Although the use of renewable sources limits the available chemical space for a “Green” production, the great variety of naturally occurring precursors, i.e., fatty acids and sugars, opens a myriad of possibilities to create biosurfactants capable of replacing the fatigued fossil-derived amphiphiles. Here, we visit the concept of isomer-directed assembly applied to sugar-based surfactants, wherein amphiphile assembly and function are fine-tuned through changes in the stereochemical and regiochemical configuration of the molecule. As such, we show how isomerism defines directional interactions and solvation, ultimately dictating the assembly of surfactants. However, a general framework to understand the structure-function relationship for these is still missing, which is key to realizing this divergent set of tools for the design of new surfactants.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029423000936/pdfft?md5=30a9b10052fed3f0e41db631e41ead25&pid=1-s2.0-S1359029423000936-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The underlying order: Isomerism as a blueprint to control the behavior of sugar-based (bio)surfactants\",\"authors\":\"Adrian Sanchez-Fernandez ,&nbsp;Jia-Fei Poon\",\"doi\":\"10.1016/j.cocis.2023.101768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surfactants are ubiquitous in formulated products and technologies. As one of the most important commodity chemicals, their remarkable consumption leads to the necessity of finding sustainable alternatives. Although the use of renewable sources limits the available chemical space for a “Green” production, the great variety of naturally occurring precursors, i.e., fatty acids and sugars, opens a myriad of possibilities to create biosurfactants capable of replacing the fatigued fossil-derived amphiphiles. Here, we visit the concept of isomer-directed assembly applied to sugar-based surfactants, wherein amphiphile assembly and function are fine-tuned through changes in the stereochemical and regiochemical configuration of the molecule. As such, we show how isomerism defines directional interactions and solvation, ultimately dictating the assembly of surfactants. However, a general framework to understand the structure-function relationship for these is still missing, which is key to realizing this divergent set of tools for the design of new surfactants.</p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1359029423000936/pdfft?md5=30a9b10052fed3f0e41db631e41ead25&pid=1-s2.0-S1359029423000936-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029423000936\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000936","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

表面活性剂在配方产品和技术中无处不在。作为最重要的商品化学品之一,它们的巨大消费导致了寻找可持续替代品的必要性。虽然可再生能源的使用限制了“绿色”生产的可用化学空间,但多种自然产生的前体,如脂肪酸和糖,为创造生物表面活性剂提供了无数的可能性,这些生物表面活性剂能够取代疲劳的化石衍生的两亲动物。在这里,我们访问了应用于糖基表面活性剂的异构体定向组装的概念,其中两亲性组装和功能通过分子的立体化学和区域化学构型的变化进行微调。因此,我们展示了同分异构如何定义定向相互作用和溶剂化,最终决定了表面活性剂的组装。然而,了解这些结构-功能关系的一般框架仍然缺失,这是实现这种设计新表面活性剂的不同工具集的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The underlying order: Isomerism as a blueprint to control the behavior of sugar-based (bio)surfactants

The underlying order: Isomerism as a blueprint to control the behavior of sugar-based (bio)surfactants

The underlying order: Isomerism as a blueprint to control the behavior of sugar-based (bio)surfactants

Surfactants are ubiquitous in formulated products and technologies. As one of the most important commodity chemicals, their remarkable consumption leads to the necessity of finding sustainable alternatives. Although the use of renewable sources limits the available chemical space for a “Green” production, the great variety of naturally occurring precursors, i.e., fatty acids and sugars, opens a myriad of possibilities to create biosurfactants capable of replacing the fatigued fossil-derived amphiphiles. Here, we visit the concept of isomer-directed assembly applied to sugar-based surfactants, wherein amphiphile assembly and function are fine-tuned through changes in the stereochemical and regiochemical configuration of the molecule. As such, we show how isomerism defines directional interactions and solvation, ultimately dictating the assembly of surfactants. However, a general framework to understand the structure-function relationship for these is still missing, which is key to realizing this divergent set of tools for the design of new surfactants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信