简并图中的Kempe变化

IF 1 3区 数学 Q1 MATHEMATICS
Marthe Bonamy, Vincent Delecroix, Clément Legrand–Duchesne
{"title":"简并图中的Kempe变化","authors":"Marthe Bonamy,&nbsp;Vincent Delecroix,&nbsp;Clément Legrand–Duchesne","doi":"10.1016/j.ejc.2023.103802","DOIUrl":null,"url":null,"abstract":"<div><p>We consider Kempe changes on the <span><math><mi>k</mi></math></span>-colorings of a graph on <span><math><mi>n</mi></math></span> vertices. If the graph is <span><math><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-degenerate, then all its <span><math><mi>k</mi></math></span>-colorings are equivalent up to Kempe changes. However, the sequence between two <span><math><mi>k</mi></math></span>-colorings that arises from the proof may have length exponential in the number of vertices. An intriguing open question is whether it can be turned polynomial. We prove this to be possible under the stronger assumption that the graph has treewidth at most <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>. Namely, any two <span><math><mi>k</mi></math></span>-colorings are equivalent up to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>k</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> Kempe changes. We investigate other restrictions (list coloring, bounded maximum average degree, degree bounds). As one of the main results, we derive that given an <span><math><mi>n</mi></math></span><span>-vertex graph with maximum degree </span><span><math><mi>Δ</mi></math></span>, the <span><math><mi>Δ</mi></math></span>-colorings are all equivalent up to <span><math><mrow><msub><mrow><mi>O</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> Kempe changes, unless <span><math><mrow><mi>Δ</mi><mo>=</mo><mn>3</mn></mrow></math></span> and some connected component is a 3-prism, that is <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>□</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>, in which case there exist some non-equivalent 3-colorings.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kempe changes in degenerate graphs\",\"authors\":\"Marthe Bonamy,&nbsp;Vincent Delecroix,&nbsp;Clément Legrand–Duchesne\",\"doi\":\"10.1016/j.ejc.2023.103802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider Kempe changes on the <span><math><mi>k</mi></math></span>-colorings of a graph on <span><math><mi>n</mi></math></span> vertices. If the graph is <span><math><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-degenerate, then all its <span><math><mi>k</mi></math></span>-colorings are equivalent up to Kempe changes. However, the sequence between two <span><math><mi>k</mi></math></span>-colorings that arises from the proof may have length exponential in the number of vertices. An intriguing open question is whether it can be turned polynomial. We prove this to be possible under the stronger assumption that the graph has treewidth at most <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>. Namely, any two <span><math><mi>k</mi></math></span>-colorings are equivalent up to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>k</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> Kempe changes. We investigate other restrictions (list coloring, bounded maximum average degree, degree bounds). As one of the main results, we derive that given an <span><math><mi>n</mi></math></span><span>-vertex graph with maximum degree </span><span><math><mi>Δ</mi></math></span>, the <span><math><mi>Δ</mi></math></span>-colorings are all equivalent up to <span><math><mrow><msub><mrow><mi>O</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> Kempe changes, unless <span><math><mrow><mi>Δ</mi><mo>=</mo><mn>3</mn></mrow></math></span> and some connected component is a 3-prism, that is <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>□</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>, in which case there exist some non-equivalent 3-colorings.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669823001191\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669823001191","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在n个顶点的图的k色上的Kempe变化。如果图是(k−1)-简并的,那么它的所有k色直到Kempe变化都是等价的。然而,由证明产生的两个k-着色之间的序列在顶点数量上可能具有指数长度。一个有趣的开放性问题是它是否可以变成多项式。我们在一个更强的假设下证明了这是可能的,即图的树宽不超过k−1。也就是说,任意两个k色直到O(kn2) Kempe变化都是等价的。我们研究了其他限制(列表着色,有界最大平均度,度界)。作为主要结果之一,我们得到了给定一个最大度为Δ的n顶点图,在OΔ(n2) Kempe变化之前,Δ-colorings都是等价的,除非Δ=3并且某些连接分量是3棱镜,即K2□K3,在这种情况下存在一些不等价的3着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kempe changes in degenerate graphs

We consider Kempe changes on the k-colorings of a graph on n vertices. If the graph is (k1)-degenerate, then all its k-colorings are equivalent up to Kempe changes. However, the sequence between two k-colorings that arises from the proof may have length exponential in the number of vertices. An intriguing open question is whether it can be turned polynomial. We prove this to be possible under the stronger assumption that the graph has treewidth at most k1. Namely, any two k-colorings are equivalent up to O(kn2) Kempe changes. We investigate other restrictions (list coloring, bounded maximum average degree, degree bounds). As one of the main results, we derive that given an n-vertex graph with maximum degree Δ, the Δ-colorings are all equivalent up to OΔ(n2) Kempe changes, unless Δ=3 and some connected component is a 3-prism, that is K2K3, in which case there exist some non-equivalent 3-colorings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信