{"title":"多孔材料水力学特性孔隙网络模型的微观验证","authors":"Daan Deckers, Hans Janssen","doi":"10.1007/s11242-023-02035-y","DOIUrl":null,"url":null,"abstract":"<div><p>In a pore network model, microscopic moisture storage and transport processes are modeled at pore level after which this information is extrapolated to obtain macroscopic properties describing the material’s moisture behavior. Such a model is typically validated by comparing measured and simulated macroscopic properties. However, due to the uncertainty associated with the experimental property determination, a possibly incorrect description of the model’s microscopic processes can be overlooked. Assessing the model’s ability to correctly simulate the moisture behavior at pore level is therefore required for its complete validation. To this aim, the moisture stored in the individual pores of unsaturated materials is imaged with the help of X-ray computed tomography images and compared to the moisture distribution simulated with a pore network model. The acquired X-ray computed tomography images clearly show the evolution of the drying process, wherein emptied pores retain water in their irregularly shaped corners. While some corners do not store any moisture, others allow a maximum of 10 % of the pore’s volume to be filled with corner islands. By comparing these images with the pore network model, however, it becomes clear that the amount of water, trapped in these pore corners is heavily overestimated in the model’s current implementation. Since this implementation is commonly used in existing pore network models, this paper proves the need of a detailed investigation of the corner islands in real porous media to formulate a different way of calculating moisture storage in pore corners.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic Validation of a Pore Network Model for Hygric Properties of Porous Materials\",\"authors\":\"Daan Deckers, Hans Janssen\",\"doi\":\"10.1007/s11242-023-02035-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a pore network model, microscopic moisture storage and transport processes are modeled at pore level after which this information is extrapolated to obtain macroscopic properties describing the material’s moisture behavior. Such a model is typically validated by comparing measured and simulated macroscopic properties. However, due to the uncertainty associated with the experimental property determination, a possibly incorrect description of the model’s microscopic processes can be overlooked. Assessing the model’s ability to correctly simulate the moisture behavior at pore level is therefore required for its complete validation. To this aim, the moisture stored in the individual pores of unsaturated materials is imaged with the help of X-ray computed tomography images and compared to the moisture distribution simulated with a pore network model. The acquired X-ray computed tomography images clearly show the evolution of the drying process, wherein emptied pores retain water in their irregularly shaped corners. While some corners do not store any moisture, others allow a maximum of 10 % of the pore’s volume to be filled with corner islands. By comparing these images with the pore network model, however, it becomes clear that the amount of water, trapped in these pore corners is heavily overestimated in the model’s current implementation. Since this implementation is commonly used in existing pore network models, this paper proves the need of a detailed investigation of the corner islands in real porous media to formulate a different way of calculating moisture storage in pore corners.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-023-02035-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-023-02035-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Microscopic Validation of a Pore Network Model for Hygric Properties of Porous Materials
In a pore network model, microscopic moisture storage and transport processes are modeled at pore level after which this information is extrapolated to obtain macroscopic properties describing the material’s moisture behavior. Such a model is typically validated by comparing measured and simulated macroscopic properties. However, due to the uncertainty associated with the experimental property determination, a possibly incorrect description of the model’s microscopic processes can be overlooked. Assessing the model’s ability to correctly simulate the moisture behavior at pore level is therefore required for its complete validation. To this aim, the moisture stored in the individual pores of unsaturated materials is imaged with the help of X-ray computed tomography images and compared to the moisture distribution simulated with a pore network model. The acquired X-ray computed tomography images clearly show the evolution of the drying process, wherein emptied pores retain water in their irregularly shaped corners. While some corners do not store any moisture, others allow a maximum of 10 % of the pore’s volume to be filled with corner islands. By comparing these images with the pore network model, however, it becomes clear that the amount of water, trapped in these pore corners is heavily overestimated in the model’s current implementation. Since this implementation is commonly used in existing pore network models, this paper proves the need of a detailed investigation of the corner islands in real porous media to formulate a different way of calculating moisture storage in pore corners.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).