Pedro Henrique Fernandes da Silva, Hervé Kerivin, Juan Pablo Nant, Annegret K. Wagler
{"title":"解决由组合特性驱动的路由和频谱分配问题","authors":"Pedro Henrique Fernandes da Silva, Hervé Kerivin, Juan Pablo Nant, Annegret K. Wagler","doi":"10.1002/net.22195","DOIUrl":null,"url":null,"abstract":"The routing and spectrum assignment problem in modern optical networks is an NP-hard problem that has received increasing attention during the last years. The majority of existing integer linear programming models for the problem uses edge-path formulations where variables are associated with all possible routing paths so that the number of variables grows exponentially with the size of the instance. To bypass this difficulty, precomputed subsets of all possible paths per demand are typically used, which cannot guarantee optimality of the solutions in general. Our contribution is to provide a framework for the use of edge-path formulations to minimize the spectrum width of a solution. For that, we select an appropriate subset of paths to operate on with the help of combinatorial properties in such a way that optimality of the solution can be guaranteed. Computational results indicate that our approach is indeed promising to solve the routing and spectrum assignment problem.","PeriodicalId":54734,"journal":{"name":"Networks","volume":"31 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the routing and spectrum assignment problem, driven by combinatorial properties\",\"authors\":\"Pedro Henrique Fernandes da Silva, Hervé Kerivin, Juan Pablo Nant, Annegret K. Wagler\",\"doi\":\"10.1002/net.22195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The routing and spectrum assignment problem in modern optical networks is an NP-hard problem that has received increasing attention during the last years. The majority of existing integer linear programming models for the problem uses edge-path formulations where variables are associated with all possible routing paths so that the number of variables grows exponentially with the size of the instance. To bypass this difficulty, precomputed subsets of all possible paths per demand are typically used, which cannot guarantee optimality of the solutions in general. Our contribution is to provide a framework for the use of edge-path formulations to minimize the spectrum width of a solution. For that, we select an appropriate subset of paths to operate on with the help of combinatorial properties in such a way that optimality of the solution can be guaranteed. Computational results indicate that our approach is indeed promising to solve the routing and spectrum assignment problem.\",\"PeriodicalId\":54734,\"journal\":{\"name\":\"Networks\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/net.22195\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/net.22195","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Solving the routing and spectrum assignment problem, driven by combinatorial properties
The routing and spectrum assignment problem in modern optical networks is an NP-hard problem that has received increasing attention during the last years. The majority of existing integer linear programming models for the problem uses edge-path formulations where variables are associated with all possible routing paths so that the number of variables grows exponentially with the size of the instance. To bypass this difficulty, precomputed subsets of all possible paths per demand are typically used, which cannot guarantee optimality of the solutions in general. Our contribution is to provide a framework for the use of edge-path formulations to minimize the spectrum width of a solution. For that, we select an appropriate subset of paths to operate on with the help of combinatorial properties in such a way that optimality of the solution can be guaranteed. Computational results indicate that our approach is indeed promising to solve the routing and spectrum assignment problem.
期刊介绍:
Network problems are pervasive in our modern technological society, as witnessed by our reliance on physical networks that provide power, communication, and transportation. As well, a number of processes can be modeled using logical networks, as in the scheduling of interdependent tasks, the dating of archaeological artifacts, or the compilation of subroutines comprising a large computer program. Networks provide a common framework for posing and studying problems that often have wider applicability than their originating context.
The goal of this journal is to provide a central forum for the distribution of timely information about network problems, their design and mathematical analysis, as well as efficient algorithms for carrying out optimization on networks. The nonstandard modeling of diverse processes using networks and network concepts is also of interest. Consequently, the disciplines that are useful in studying networks are varied, including applied mathematics, operations research, computer science, discrete mathematics, and economics.
Networks publishes material on the analytic modeling of problems using networks, the mathematical analysis of network problems, the design of computationally efficient network algorithms, and innovative case studies of successful network applications. We do not typically publish works that fall in the realm of pure graph theory (without significant algorithmic and modeling contributions) or papers that deal with engineering aspects of network design. Since the audience for this journal is then necessarily broad, articles that impact multiple application areas or that creatively use new or existing methodologies are especially appropriate. We seek to publish original, well-written research papers that make a substantive contribution to the knowledge base. In addition, tutorial and survey articles are welcomed. All manuscripts are carefully refereed.