{"title":"物理学入门课程中学生问题解决方案的AI评分:可行性研究","authors":"Gerd Kortemeyer","doi":"10.1103/physrevphyseducres.19.020163","DOIUrl":null,"url":null,"abstract":"Solving problems is crucial for learning physics, and not only final solutions but also their derivations are important. Grading these derivations is labor intensive, as it generally involves human evaluation of handwritten work. AI tools have not been an alternative, since even for short answers, they needed specific training for each problem or set of problems. Extensively pretrained AI systems offer a potentially universal grading solution without this specific training. This feasibility study explores an AI-assisted workflow to grade handwritten physics derivations using MathPix and GPT-4. We were able to successfully scan handwritten solution paths and achieved an R-squared of 0.84 compared to human graders on a synthetic dataset. The proposed workflow appears promising for formative feedback, but for final evaluations, it would best be used to assist human graders.","PeriodicalId":54296,"journal":{"name":"Physical Review Physics Education Research","volume":"65 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Toward AI grading of student problem solutions in introductory physics: A feasibility study\",\"authors\":\"Gerd Kortemeyer\",\"doi\":\"10.1103/physrevphyseducres.19.020163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving problems is crucial for learning physics, and not only final solutions but also their derivations are important. Grading these derivations is labor intensive, as it generally involves human evaluation of handwritten work. AI tools have not been an alternative, since even for short answers, they needed specific training for each problem or set of problems. Extensively pretrained AI systems offer a potentially universal grading solution without this specific training. This feasibility study explores an AI-assisted workflow to grade handwritten physics derivations using MathPix and GPT-4. We were able to successfully scan handwritten solution paths and achieved an R-squared of 0.84 compared to human graders on a synthetic dataset. The proposed workflow appears promising for formative feedback, but for final evaluations, it would best be used to assist human graders.\",\"PeriodicalId\":54296,\"journal\":{\"name\":\"Physical Review Physics Education Research\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Physics Education Research\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevphyseducres.19.020163\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Physics Education Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1103/physrevphyseducres.19.020163","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Toward AI grading of student problem solutions in introductory physics: A feasibility study
Solving problems is crucial for learning physics, and not only final solutions but also their derivations are important. Grading these derivations is labor intensive, as it generally involves human evaluation of handwritten work. AI tools have not been an alternative, since even for short answers, they needed specific training for each problem or set of problems. Extensively pretrained AI systems offer a potentially universal grading solution without this specific training. This feasibility study explores an AI-assisted workflow to grade handwritten physics derivations using MathPix and GPT-4. We were able to successfully scan handwritten solution paths and achieved an R-squared of 0.84 compared to human graders on a synthetic dataset. The proposed workflow appears promising for formative feedback, but for final evaluations, it would best be used to assist human graders.
期刊介绍:
PRPER covers all educational levels, from elementary through graduate education. All topics in experimental and theoretical physics education research are accepted, including, but not limited to:
Educational policy
Instructional strategies, and materials development
Research methodology
Epistemology, attitudes, and beliefs
Learning environment
Scientific reasoning and problem solving
Diversity and inclusion
Learning theory
Student participation
Faculty and teacher professional development