具有空间远程相互作用的定向渗透的自动编码器辅助研究

Yanyang Wang, Yuxiang Yang, Wei Li
{"title":"具有空间远程相互作用的定向渗透的自动编码器辅助研究","authors":"Yanyang Wang, Yuxiang Yang, Wei Li","doi":"arxiv-2311.12426","DOIUrl":null,"url":null,"abstract":"Spatial L{\\'{e}}vy-like flights are introduced as a way to absorbing phase\ntransitions to produce non-local interactions. We utilize the autoencoder, an\nunsupervised learning method, to predict the critical points for $(1+1)$-d\ndirected percolation with such spatial long-range interactions. After making a\nglobal coverage of the reaction-diffusion distance and taking a series of\ndifferent values for the parameter \\;${\\beta}$\\; in the distribution\n\\;$P(r){\\sim}1/r^{\\beta}$\\;, the critical points $P_c$ that can be continuously\nvaried are obtained. And the dynamic decay of the particle density under the\ncritical points was counted as a way to determine the critical exponent\n\\;${\\delta}$\\; of the survival rate. We also investigate the active behavior of\nthe system's particles under the critical point with increasing time steps,\nwhich allows us to determine the characteristic time $t_f$ of the finite-scale\nsystems. And the dynamic exponents \\;$z$\\; are obtained using the scaling\nrelation \\;$t_f{\\sim}L^{z}$\\;. We find that the autoencoder can well identify\nthis characteristic evolutionary behavior of particles. Finally, we discuss the\ncompliance of the scaling form \\;$1/{\\delta}-({\\beta}-2)/{\\delta}z=2$\\; in\ndifferent \\;${\\beta}$\\; intervals as well as a method to introduce a global\nscaling mechanism by generating a random walking step using the L{\\'{e}}vy\ndistribution.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autoencoder-assisted study of directed percolation with spatial long-range interactions\",\"authors\":\"Yanyang Wang, Yuxiang Yang, Wei Li\",\"doi\":\"arxiv-2311.12426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial L{\\\\'{e}}vy-like flights are introduced as a way to absorbing phase\\ntransitions to produce non-local interactions. We utilize the autoencoder, an\\nunsupervised learning method, to predict the critical points for $(1+1)$-d\\ndirected percolation with such spatial long-range interactions. After making a\\nglobal coverage of the reaction-diffusion distance and taking a series of\\ndifferent values for the parameter \\\\;${\\\\beta}$\\\\; in the distribution\\n\\\\;$P(r){\\\\sim}1/r^{\\\\beta}$\\\\;, the critical points $P_c$ that can be continuously\\nvaried are obtained. And the dynamic decay of the particle density under the\\ncritical points was counted as a way to determine the critical exponent\\n\\\\;${\\\\delta}$\\\\; of the survival rate. We also investigate the active behavior of\\nthe system's particles under the critical point with increasing time steps,\\nwhich allows us to determine the characteristic time $t_f$ of the finite-scale\\nsystems. And the dynamic exponents \\\\;$z$\\\\; are obtained using the scaling\\nrelation \\\\;$t_f{\\\\sim}L^{z}$\\\\;. We find that the autoencoder can well identify\\nthis characteristic evolutionary behavior of particles. Finally, we discuss the\\ncompliance of the scaling form \\\\;$1/{\\\\delta}-({\\\\beta}-2)/{\\\\delta}z=2$\\\\; in\\ndifferent \\\\;${\\\\beta}$\\\\; intervals as well as a method to introduce a global\\nscaling mechanism by generating a random walking step using the L{\\\\'{e}}vy\\ndistribution.\",\"PeriodicalId\":501231,\"journal\":{\"name\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.12426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.12426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间类{l<}s:1>飞行被引入作为吸收相变以产生非局部相互作用的一种方式。我们利用自动编码器,一种无监督学习方法,来预测具有这种空间远程相互作用的$(1+1)$ -定向渗透的临界点。在对反应扩散距离进行全局覆盖,并对参数\取一系列不同的值后;${\beta}$ \;在分布中\;$P(r){\sim}1/r^{\beta}$ \;,得到可连续变化的临界点$P_c$。计算了粒子密度在临界点下的动态衰减,作为确定临界指数的一种方法;${\delta}$ \;存活率。我们还研究了系统粒子在临界点下随时间步长的活跃行为,从而确定了有限尺度系统的特征时间$t_f$。动态指数\;$z$ \;是通过缩放关系\;$t_f{\sim}L^{z}$ \;。我们发现自编码器可以很好地识别粒子的这种特征进化行为。最后,讨论了标度形式的顺应性;$1/{\delta}-({\beta}-2)/{\delta}z=2$ \;无所谓的\;${\beta}$ \;区间,以及一种引入全局缩放机制的方法,该机制是通过使用{lsamvydistribution}生成随机行走步骤来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autoencoder-assisted study of directed percolation with spatial long-range interactions
Spatial L{\'{e}}vy-like flights are introduced as a way to absorbing phase transitions to produce non-local interactions. We utilize the autoencoder, an unsupervised learning method, to predict the critical points for $(1+1)$-d directed percolation with such spatial long-range interactions. After making a global coverage of the reaction-diffusion distance and taking a series of different values for the parameter \;${\beta}$\; in the distribution \;$P(r){\sim}1/r^{\beta}$\;, the critical points $P_c$ that can be continuously varied are obtained. And the dynamic decay of the particle density under the critical points was counted as a way to determine the critical exponent \;${\delta}$\; of the survival rate. We also investigate the active behavior of the system's particles under the critical point with increasing time steps, which allows us to determine the characteristic time $t_f$ of the finite-scale systems. And the dynamic exponents \;$z$\; are obtained using the scaling relation \;$t_f{\sim}L^{z}$\;. We find that the autoencoder can well identify this characteristic evolutionary behavior of particles. Finally, we discuss the compliance of the scaling form \;$1/{\delta}-({\beta}-2)/{\delta}z=2$\; in different \;${\beta}$\; intervals as well as a method to introduce a global scaling mechanism by generating a random walking step using the L{\'{e}}vy distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信