{"title":"晶格玻尔兹曼格式,有限体积和边界条件","authors":"François DuboisLMO, LMSSC, Pierre LallemandCSRC","doi":"arxiv-2306.15291","DOIUrl":null,"url":null,"abstract":"We develop the idea that a natural link between Boltzmann schemes and finite\nvolumes exists naturally: the conserved mass and momentum during the collision\nphase of the Boltzmann scheme induces general expressions for mass and momentum\nfluxes. We treat a unidimensional case and focus our development in two\ndimensions on possible flux boundary conditions. Several test cases show that a\nhigh level of accuracy can be achieved with this scheme.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On lattice Boltzmann scheme, finite volumes and boundary conditions\",\"authors\":\"François DuboisLMO, LMSSC, Pierre LallemandCSRC\",\"doi\":\"arxiv-2306.15291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop the idea that a natural link between Boltzmann schemes and finite\\nvolumes exists naturally: the conserved mass and momentum during the collision\\nphase of the Boltzmann scheme induces general expressions for mass and momentum\\nfluxes. We treat a unidimensional case and focus our development in two\\ndimensions on possible flux boundary conditions. Several test cases show that a\\nhigh level of accuracy can be achieved with this scheme.\",\"PeriodicalId\":501231,\"journal\":{\"name\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2306.15291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2306.15291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On lattice Boltzmann scheme, finite volumes and boundary conditions
We develop the idea that a natural link between Boltzmann schemes and finite
volumes exists naturally: the conserved mass and momentum during the collision
phase of the Boltzmann scheme induces general expressions for mass and momentum
fluxes. We treat a unidimensional case and focus our development in two
dimensions on possible flux boundary conditions. Several test cases show that a
high level of accuracy can be achieved with this scheme.