为什么只考虑线性元胞自动机的种子是$1$的情况就足够了

Akane Kawaharada
{"title":"为什么只考虑线性元胞自动机的种子是$1$的情况就足够了","authors":"Akane Kawaharada","doi":"arxiv-2310.07167","DOIUrl":null,"url":null,"abstract":"When using a cellular automaton (CA) as a fractal generator, consider orbits\nfrom the single site seed, an initial configuration that gives only a single\ncell a positive value. In the case of a two-state CA, since the possible states\nof each cell are $0$ or $1$, the \"seed\" in the single site seed is uniquely\ndetermined to be the state $1$. However, for a CA with three or more states,\nthere are multiple candidates for the seed. For example, for a $3$-state CA,\nthe possible states of each cell are $0$, $1$, and $2$, so the candidates for\nthe seed are $1$ and $2$. For a $4$-state CA, the possible states of each cell\nare $0$, $1$, $2$, and $3$, so the candidates for the seed are $1$, $2$, and\n$3$. Thus, as the number of possible states of a CA increases, the number of\nseed candidates also increases. In this paper, we prove that for linear CAs it\nis sufficient to consider only the orbit from the single site seed with the\nseed $1$.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why it is sufficient to consider only the case where the seed of linear cellular automata is $1$\",\"authors\":\"Akane Kawaharada\",\"doi\":\"arxiv-2310.07167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When using a cellular automaton (CA) as a fractal generator, consider orbits\\nfrom the single site seed, an initial configuration that gives only a single\\ncell a positive value. In the case of a two-state CA, since the possible states\\nof each cell are $0$ or $1$, the \\\"seed\\\" in the single site seed is uniquely\\ndetermined to be the state $1$. However, for a CA with three or more states,\\nthere are multiple candidates for the seed. For example, for a $3$-state CA,\\nthe possible states of each cell are $0$, $1$, and $2$, so the candidates for\\nthe seed are $1$ and $2$. For a $4$-state CA, the possible states of each cell\\nare $0$, $1$, $2$, and $3$, so the candidates for the seed are $1$, $2$, and\\n$3$. Thus, as the number of possible states of a CA increases, the number of\\nseed candidates also increases. In this paper, we prove that for linear CAs it\\nis sufficient to consider only the orbit from the single site seed with the\\nseed $1$.\",\"PeriodicalId\":501231,\"journal\":{\"name\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2310.07167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.07167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当使用元胞自动机(CA)作为分形生成器时,考虑来自单个位点种子的轨道,这是一个初始配置,只给单个细胞一个正值。在双状态CA的情况下,由于每个单元的可能状态为$0$或$1$,因此单站点种子中的“种子”被唯一地确定为状态$1$。但是,对于具有三个或更多状态的CA,种子有多个候选项。例如,对于$3$状态的CA,每个cell的可能状态为$0$、$1$和$2$,因此种子的候选值为$1$和$2$。对于$4$状态的CA,每个cell的可能状态为$0$、$1$、$2$和$3$,因此种子的候选值为$1$、$2$和$3$。因此,随着CA可能状态数量的增加,种子候选数量也会增加。在本文中,我们证明了对于线性CAs只考虑从单点种子出发的轨道是足够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why it is sufficient to consider only the case where the seed of linear cellular automata is $1$
When using a cellular automaton (CA) as a fractal generator, consider orbits from the single site seed, an initial configuration that gives only a single cell a positive value. In the case of a two-state CA, since the possible states of each cell are $0$ or $1$, the "seed" in the single site seed is uniquely determined to be the state $1$. However, for a CA with three or more states, there are multiple candidates for the seed. For example, for a $3$-state CA, the possible states of each cell are $0$, $1$, and $2$, so the candidates for the seed are $1$ and $2$. For a $4$-state CA, the possible states of each cell are $0$, $1$, $2$, and $3$, so the candidates for the seed are $1$, $2$, and $3$. Thus, as the number of possible states of a CA increases, the number of seed candidates also increases. In this paper, we prove that for linear CAs it is sufficient to consider only the orbit from the single site seed with the seed $1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信