伊辛模型三角图

Goktug Islamoglu
{"title":"伊辛模型三角图","authors":"Goktug Islamoglu","doi":"arxiv-2309.06307","DOIUrl":null,"url":null,"abstract":"A novel cellular automaton with update rules reversed with the environment\ndepending on the cell, is frustrated through its von Neumann and Moore\nneighborhoods and evolved anisotropically. Addition of fine tuning and coupling\nplots the susceptibility of an Ising model that has five phase transitions,\nboth first-order and second-order, and four magnetic phases. This\nsusceptibility model generates a trigonometric plot as an output of the cell\nevolution, without the use of math libraries or primitives.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trigonometric Plot of Ising Model\",\"authors\":\"Goktug Islamoglu\",\"doi\":\"arxiv-2309.06307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel cellular automaton with update rules reversed with the environment\\ndepending on the cell, is frustrated through its von Neumann and Moore\\nneighborhoods and evolved anisotropically. Addition of fine tuning and coupling\\nplots the susceptibility of an Ising model that has five phase transitions,\\nboth first-order and second-order, and four magnetic phases. This\\nsusceptibility model generates a trigonometric plot as an output of the cell\\nevolution, without the use of math libraries or primitives.\",\"PeriodicalId\":501231,\"journal\":{\"name\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.06307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.06307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一种新颖的元胞自动机,其更新规则与依赖于细胞的环境相反,通过其冯诺依曼和摩尔邻域而受挫,并向各向异性进化。添加微调和耦合绘制了具有五个相变(一阶和二阶)和四个磁相的Ising模型的磁化率。这种敏感性模型产生一个三角图作为细胞进化的输出,而不使用数学库或原语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trigonometric Plot of Ising Model
A novel cellular automaton with update rules reversed with the environment depending on the cell, is frustrated through its von Neumann and Moore neighborhoods and evolved anisotropically. Addition of fine tuning and coupling plots the susceptibility of an Ising model that has five phase transitions, both first-order and second-order, and four magnetic phases. This susceptibility model generates a trigonometric plot as an output of the cell evolution, without the use of math libraries or primitives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信