追求黄金比例普适性类

V. Popkov, and G. M. Schütz
{"title":"追求黄金比例普适性类","authors":"V. Popkov, and G. M. Schütz","doi":"arxiv-2310.19116","DOIUrl":null,"url":null,"abstract":"Using mode coupling theory the conditions for all allowed dynamical\nuniversality classes for the conserved modes in one-dimensional driven systems\nare presented in closed form as a function of the stationary currents and their\nderivatives. With a view on the search for the golden ratio universality class\nthe existence of some families of microscopic models is ruled out a priori by\nusing an Onsager-type macroscopic current symmetry. At equal mean densities of\nthe conserved quantities the golden modes can only appear if the currents are\nantisymmetric under interchange of the conserved densities and if these\ndensities are correlated, but not in the symmetric case where at equal\ndensities one mode is always diffusive and the second may be either\nKardar-Parisi-Zhang (KPZ), modified KPZ, 3/2-L\\'evy, or also diffusive. We also\nshow that the predictions of mode coupling theory for a noisy chain of harmonic\noscillators are exact.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"218 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quest for the golden ratio universality class\",\"authors\":\"V. Popkov, and G. M. Schütz\",\"doi\":\"arxiv-2310.19116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using mode coupling theory the conditions for all allowed dynamical\\nuniversality classes for the conserved modes in one-dimensional driven systems\\nare presented in closed form as a function of the stationary currents and their\\nderivatives. With a view on the search for the golden ratio universality class\\nthe existence of some families of microscopic models is ruled out a priori by\\nusing an Onsager-type macroscopic current symmetry. At equal mean densities of\\nthe conserved quantities the golden modes can only appear if the currents are\\nantisymmetric under interchange of the conserved densities and if these\\ndensities are correlated, but not in the symmetric case where at equal\\ndensities one mode is always diffusive and the second may be either\\nKardar-Parisi-Zhang (KPZ), modified KPZ, 3/2-L\\\\'evy, or also diffusive. We also\\nshow that the predictions of mode coupling theory for a noisy chain of harmonic\\noscillators are exact.\",\"PeriodicalId\":501231,\"journal\":{\"name\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"volume\":\"218 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2310.19116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.19116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用模态耦合理论,以稳态电流及其导数的函数形式给出了一维驱动系统中守恒模态的所有允许的动态泛型的条件。从寻找黄金比例普适类的角度出发,利用onsager型宏观电流对称性先验地排除了某些微观模型族的存在。在守恒量的等平均密度下,只有当电流在守恒密度的交换下是反对称的,并且这些密度是相关的,黄金模态才会出现,但在对称情况下,在等密度下,一个模态总是扩散的,第二个模态可能是卡达-帕里西-张(KPZ),修正KPZ, 3/2-L / evy,或者也是扩散的。我们还证明了模式耦合理论对噪声谐振子链的预测是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quest for the golden ratio universality class
Using mode coupling theory the conditions for all allowed dynamical universality classes for the conserved modes in one-dimensional driven systems are presented in closed form as a function of the stationary currents and their derivatives. With a view on the search for the golden ratio universality class the existence of some families of microscopic models is ruled out a priori by using an Onsager-type macroscopic current symmetry. At equal mean densities of the conserved quantities the golden modes can only appear if the currents are antisymmetric under interchange of the conserved densities and if these densities are correlated, but not in the symmetric case where at equal densities one mode is always diffusive and the second may be either Kardar-Parisi-Zhang (KPZ), modified KPZ, 3/2-L\'evy, or also diffusive. We also show that the predictions of mode coupling theory for a noisy chain of harmonic oscillators are exact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信