模式诱导注入:$\mathbb{F}_2$上一维元胞自动机注入局部规则构造的新思路

Defu Lin, Weilin Chen, Chen Wang, Junchi Ma, Chao Wang
{"title":"模式诱导注入:$\\mathbb{F}_2$上一维元胞自动机注入局部规则构造的新思路","authors":"Defu Lin, Weilin Chen, Chen Wang, Junchi Ma, Chao Wang","doi":"arxiv-2309.15468","DOIUrl":null,"url":null,"abstract":"We discovered that certain patterns called injective patterns remain stable\nduring the revolution process, allowing us to create many reversible CA simply\nby using them to design the revolution rules. By examining injective patterns,\nwe investigated their structural stability during revolutions. This led us to\ndiscover extended patterns and pattern mixtures that can create more reversible\ncellular automata. Furthermore, our research proposed a new way to study the\nreversibility of CA by observing the structure of local rule $f$. In this\npaper, we will explicate our study and propose an efficient method for finding\nthe injective patterns. Our algorithms can find injective rules and generate\nlocal rule $f$ by traversing $2^{N}$, instead of $2^{2^{N}}$ to check all\ninjective rules and pick the injective ones.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns Induce Injectivity: A New Thinking in Constructing Injective Local Rules of 1D Cellular Automata over $\\\\mathbb{F}_2$\",\"authors\":\"Defu Lin, Weilin Chen, Chen Wang, Junchi Ma, Chao Wang\",\"doi\":\"arxiv-2309.15468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discovered that certain patterns called injective patterns remain stable\\nduring the revolution process, allowing us to create many reversible CA simply\\nby using them to design the revolution rules. By examining injective patterns,\\nwe investigated their structural stability during revolutions. This led us to\\ndiscover extended patterns and pattern mixtures that can create more reversible\\ncellular automata. Furthermore, our research proposed a new way to study the\\nreversibility of CA by observing the structure of local rule $f$. In this\\npaper, we will explicate our study and propose an efficient method for finding\\nthe injective patterns. Our algorithms can find injective rules and generate\\nlocal rule $f$ by traversing $2^{N}$, instead of $2^{2^{N}}$ to check all\\ninjective rules and pick the injective ones.\",\"PeriodicalId\":501231,\"journal\":{\"name\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.15468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.15468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们发现某些称为注入模式的模式在旋转过程中保持稳定,允许我们简单地使用它们来设计旋转规则,从而创建许多可逆CA。通过检查注入模式,我们研究了它们在旋转过程中的结构稳定性。这使我们发现了扩展模式和模式混合,可以创建更多的可逆性细胞自动机。此外,本研究提出了一种通过观察局部规则$f$的结构来研究CA可逆性的新方法。在本文中,我们将阐述我们的研究,并提出一种有效的方法来寻找注入模式。我们的算法可以通过遍历$2^{N}$来找到内射规则和生成局部规则$f$,而不是通过$2^{2^{N}}$来检查所有内射规则并选择内射规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patterns Induce Injectivity: A New Thinking in Constructing Injective Local Rules of 1D Cellular Automata over $\mathbb{F}_2$
We discovered that certain patterns called injective patterns remain stable during the revolution process, allowing us to create many reversible CA simply by using them to design the revolution rules. By examining injective patterns, we investigated their structural stability during revolutions. This led us to discover extended patterns and pattern mixtures that can create more reversible cellular automata. Furthermore, our research proposed a new way to study the reversibility of CA by observing the structure of local rule $f$. In this paper, we will explicate our study and propose an efficient method for finding the injective patterns. Our algorithms can find injective rules and generate local rule $f$ by traversing $2^{N}$, instead of $2^{2^{N}}$ to check all injective rules and pick the injective ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信