Chaya Weeraratna, Arthur G. Suits, Oleg S. Vasyutinskii
{"title":"相干原子轨道偏振探测多原子分子光解过程中的几何相位","authors":"Chaya Weeraratna, Arthur G. Suits, Oleg S. Vasyutinskii","doi":"10.1002/ntls.20220013","DOIUrl":null,"url":null,"abstract":"Quantum interference between multiple pathways in molecular photodissociation often results in angular momentum polarization of atomic products and this can give deep insight into fundamental physical processes. For dissociation of diatomic molecules, the resulting orbital polarization is fully understood and consistent with quantum mechanical theory. For polyatomic molecules, however, coherent photofragment orbital polarization is frequently observed but so far has eluded theoretical explanation, and physical insight is lacking. Here, we present a model of these effects for ozone photodissociation that reveals the importance of a novel manifestation of the geometric phase. We show this geometric phase effect permits the existence of coherent polarization in cases where it would otherwise vanish, and cancels it in some cases where it might otherwise exist. The model accounts for measurements in ozone that have hitherto defied explanation, and represents a step toward a deeper understanding of coherent electronic excitation in polyatomic molecules and a new role of the geometric phase.","PeriodicalId":501225,"journal":{"name":"Natural Sciences","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherent atomic orbital polarization probes the geometric phase in photodissociation of polyatomic molecules\",\"authors\":\"Chaya Weeraratna, Arthur G. Suits, Oleg S. Vasyutinskii\",\"doi\":\"10.1002/ntls.20220013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum interference between multiple pathways in molecular photodissociation often results in angular momentum polarization of atomic products and this can give deep insight into fundamental physical processes. For dissociation of diatomic molecules, the resulting orbital polarization is fully understood and consistent with quantum mechanical theory. For polyatomic molecules, however, coherent photofragment orbital polarization is frequently observed but so far has eluded theoretical explanation, and physical insight is lacking. Here, we present a model of these effects for ozone photodissociation that reveals the importance of a novel manifestation of the geometric phase. We show this geometric phase effect permits the existence of coherent polarization in cases where it would otherwise vanish, and cancels it in some cases where it might otherwise exist. The model accounts for measurements in ozone that have hitherto defied explanation, and represents a step toward a deeper understanding of coherent electronic excitation in polyatomic molecules and a new role of the geometric phase.\",\"PeriodicalId\":501225,\"journal\":{\"name\":\"Natural Sciences\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ntls.20220013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ntls.20220013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coherent atomic orbital polarization probes the geometric phase in photodissociation of polyatomic molecules
Quantum interference between multiple pathways in molecular photodissociation often results in angular momentum polarization of atomic products and this can give deep insight into fundamental physical processes. For dissociation of diatomic molecules, the resulting orbital polarization is fully understood and consistent with quantum mechanical theory. For polyatomic molecules, however, coherent photofragment orbital polarization is frequently observed but so far has eluded theoretical explanation, and physical insight is lacking. Here, we present a model of these effects for ozone photodissociation that reveals the importance of a novel manifestation of the geometric phase. We show this geometric phase effect permits the existence of coherent polarization in cases where it would otherwise vanish, and cancels it in some cases where it might otherwise exist. The model accounts for measurements in ozone that have hitherto defied explanation, and represents a step toward a deeper understanding of coherent electronic excitation in polyatomic molecules and a new role of the geometric phase.