通过在铜上生长半导体多孔聚合物一锅合成高容量硅阳极

Jieyang Huang, Andréa Martin, Anna Urbanski, Ranjit Kulkarni, Patrick Amsalem, Moritz Exner, Guiping Li, Johannes Müller, David Burmeister, Norbert Koch, Torsten Brezesinski, Nicola Pinna, Petra Uhlmann, Michael J. Bojdys
{"title":"通过在铜上生长半导体多孔聚合物一锅合成高容量硅阳极","authors":"Jieyang Huang, Andréa Martin, Anna Urbanski, Ranjit Kulkarni, Patrick Amsalem, Moritz Exner, Guiping Li, Johannes Müller, David Burmeister, Norbert Koch, Torsten Brezesinski, Nicola Pinna, Petra Uhlmann, Michael J. Bojdys","doi":"10.1002/ntls.20210105","DOIUrl":null,"url":null,"abstract":"Silicon-based anodes with lithium ions as charge carriers have the highest predicted theoretical specific capacity of 3579 mA h g<sup>−1</sup> (for Li<sub>15</sub>Si<sub>4</sub>). Contemporary electrodes do not achieve this theoretical value largely because conventional production paradigms rely on the mixing of weakly coordinated components. In this paper, a semiconductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The porous, semiconducting organic framework (1) adheres to the current collector on which it grows via cooperative van der Waals interactions, (2) acts effectively as conductor for electrical charges and binder of silicon nanoparticles via conjugated, covalent bonds, and (3) enables selective transport of electrolyte and Li-ions through pores of defined size. The resulting anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon. Finally, we combine our anodes in proof-of-concept battery assemblies using a conventional layered Ni-rich oxide cathode.","PeriodicalId":501225,"journal":{"name":"Natural Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-pot synthesis of high-capacity silicon anodes via on-copper growth of a semiconducting, porous polymer\",\"authors\":\"Jieyang Huang, Andréa Martin, Anna Urbanski, Ranjit Kulkarni, Patrick Amsalem, Moritz Exner, Guiping Li, Johannes Müller, David Burmeister, Norbert Koch, Torsten Brezesinski, Nicola Pinna, Petra Uhlmann, Michael J. Bojdys\",\"doi\":\"10.1002/ntls.20210105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon-based anodes with lithium ions as charge carriers have the highest predicted theoretical specific capacity of 3579 mA h g<sup>−1</sup> (for Li<sub>15</sub>Si<sub>4</sub>). Contemporary electrodes do not achieve this theoretical value largely because conventional production paradigms rely on the mixing of weakly coordinated components. In this paper, a semiconductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The porous, semiconducting organic framework (1) adheres to the current collector on which it grows via cooperative van der Waals interactions, (2) acts effectively as conductor for electrical charges and binder of silicon nanoparticles via conjugated, covalent bonds, and (3) enables selective transport of electrolyte and Li-ions through pores of defined size. The resulting anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon. Finally, we combine our anodes in proof-of-concept battery assemblies using a conventional layered Ni-rich oxide cathode.\",\"PeriodicalId\":501225,\"journal\":{\"name\":\"Natural Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ntls.20210105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ntls.20210105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以锂离子为载流子的硅基阳极具有最高的预测理论比容量3579 mA h g−1(对于Li15Si4)。当代电极不能达到这一理论价值,主要是因为传统的生产模式依赖于弱协调成分的混合。在本文中,一个半导体的三嗪基石墨炔聚合物网络被生长在硅纳米颗粒周围,直接生长在电流收集器(铜片)上。多孔的半导体有机框架(1)通过范德华相互作用附着在电流收集器上,(2)通过共轭共价键有效地充当电荷的导体和硅纳米颗粒的粘合剂,(3)通过规定尺寸的孔选择性地传输电解质和锂离子。所得阳极在完全锂化硅的理论极限下显示出非常高的容量。最后,我们使用传统的层状富镍氧化物阴极将我们的阳极组合在概念验证电池组件中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One-pot synthesis of high-capacity silicon anodes via on-copper growth of a semiconducting, porous polymer

One-pot synthesis of high-capacity silicon anodes via on-copper growth of a semiconducting, porous polymer
Silicon-based anodes with lithium ions as charge carriers have the highest predicted theoretical specific capacity of 3579 mA h g−1 (for Li15Si4). Contemporary electrodes do not achieve this theoretical value largely because conventional production paradigms rely on the mixing of weakly coordinated components. In this paper, a semiconductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The porous, semiconducting organic framework (1) adheres to the current collector on which it grows via cooperative van der Waals interactions, (2) acts effectively as conductor for electrical charges and binder of silicon nanoparticles via conjugated, covalent bonds, and (3) enables selective transport of electrolyte and Li-ions through pores of defined size. The resulting anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon. Finally, we combine our anodes in proof-of-concept battery assemblies using a conventional layered Ni-rich oxide cathode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信