{"title":"中紧曲面的helrich泛函","authors":"Zhongwei Yao","doi":"10.1017/s0017089523000320","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$f\\;:\\; M\\rightarrow \\mathbb{C}P^{2}$</span></span></img></span></span> be an isometric immersion of a compact surface in the complex projective plane <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb{C}P^{2}$</span></span></img></span></span>. In this paper, we consider the Helfrich-type functional <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal{H}_{\\lambda _{1},\\lambda _{2}}(f)=\\int _{M}(|H|^{2}+\\lambda _{1}+\\lambda _{2} C^{2})\\textrm{d} M$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda _{1}, \\lambda _{2}\\in \\mathbb{R}$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda _{1}\\geqslant 0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$C$</span></span></img></span></span> are respectively the mean curvature vector and the Kähler function of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$M$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb{C}P^{2}$</span></span></img></span></span>. The critical surfaces of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal{H}_{\\lambda _{1},\\lambda _{2}}(f)$</span></span></span></span> are called Helfrich surfaces. We compute the first variation of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal{H}_{\\lambda _{1},\\lambda _{2}}(f)$</span></span></span></span> and classify the homogeneous Helfrich tori in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathbb{C}P^{2}$</span></span></span></span>. Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich energy for such tori.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Helfrich functional for compact surfaces in\",\"authors\":\"Zhongwei Yao\",\"doi\":\"10.1017/s0017089523000320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f\\\\;:\\\\; M\\\\rightarrow \\\\mathbb{C}P^{2}$</span></span></img></span></span> be an isometric immersion of a compact surface in the complex projective plane <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb{C}P^{2}$</span></span></img></span></span>. In this paper, we consider the Helfrich-type functional <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal{H}_{\\\\lambda _{1},\\\\lambda _{2}}(f)=\\\\int _{M}(|H|^{2}+\\\\lambda _{1}+\\\\lambda _{2} C^{2})\\\\textrm{d} M$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda _{1}, \\\\lambda _{2}\\\\in \\\\mathbb{R}$</span></span></img></span></span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda _{1}\\\\geqslant 0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C$</span></span></img></span></span> are respectively the mean curvature vector and the Kähler function of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$M$</span></span></img></span></span> in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb{C}P^{2}$</span></span></img></span></span>. The critical surfaces of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline11.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal{H}_{\\\\lambda _{1},\\\\lambda _{2}}(f)$</span></span></span></span> are called Helfrich surfaces. We compute the first variation of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal{H}_{\\\\lambda _{1},\\\\lambda _{2}}(f)$</span></span></span></span> and classify the homogeneous Helfrich tori in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline13.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb{C}P^{2}$</span></span></span></span>. Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich energy for such tori.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089523000320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089523000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface in the complex projective plane $\mathbb{C}P^{2}$. In this paper, we consider the Helfrich-type functional $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)=\int _{M}(|H|^{2}+\lambda _{1}+\lambda _{2} C^{2})\textrm{d} M$, where $\lambda _{1}, \lambda _{2}\in \mathbb{R}$ with $\lambda _{1}\geqslant 0$, $H$ and $C$ are respectively the mean curvature vector and the Kähler function of $M$ in $\mathbb{C}P^{2}$. The critical surfaces of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ are called Helfrich surfaces. We compute the first variation of $\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ and classify the homogeneous Helfrich tori in $\mathbb{C}P^{2}$. Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich energy for such tori.