{"title":"残差并行神经网络辅助多功能可重构超材料完美吸收器的逆设计","authors":"Shuqin Wang, Zhongchao Wei, Ruihuan Wu, Qiongxiong Ma, Wen Ding, Jianping Guo","doi":"10.1007/s11468-023-02133-z","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, significant strides have been made in the inverse design of metamaterial perfect absorbers (MPAs) using deep learning techniques. However, this progress has been hindered by the functional homogeneity arising from the structural uniformity of the inverse-designed MPAs. In this paper, we address this limitation by designing reconfigurable MPAs (RMPAs) with three distinct structures and propose a residual parallel neural network (RPNN) that incorporates the optimized residual fully connected neural network (RFC-NN) for the inverse design of multifunctional MPAs. The trained RPNN accurately predicts the structural parameters and their corresponding absorption spectra with remarkable precision, yielding <i>R</i><sup>2</sup> values of 0.9981 and 0.9928, respectively. With this model, we successfully inverted the design of MPAs with three functions: broadband absorption, dual-band absorption, and triple-band absorption properties. A particularly noteworthy achievement was the realization of absorption bandwidth shifts using liquid crystal (LC) materials. Our RPNN showcases its proficiency in designing RMPAs with multifunctionality, all within a single network model. This marks a significant advancement over previous research methodologies. The proposed methodology holds great promise in diverse applications such as solar energy harvesting, detection, and filtration.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"19 4","pages":"2011 - 2021"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual Parallel Neural Networks Aided Inverse Design for Multifunctional Reconfigurable Metamaterial Perfect Absorbers\",\"authors\":\"Shuqin Wang, Zhongchao Wei, Ruihuan Wu, Qiongxiong Ma, Wen Ding, Jianping Guo\",\"doi\":\"10.1007/s11468-023-02133-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, significant strides have been made in the inverse design of metamaterial perfect absorbers (MPAs) using deep learning techniques. However, this progress has been hindered by the functional homogeneity arising from the structural uniformity of the inverse-designed MPAs. In this paper, we address this limitation by designing reconfigurable MPAs (RMPAs) with three distinct structures and propose a residual parallel neural network (RPNN) that incorporates the optimized residual fully connected neural network (RFC-NN) for the inverse design of multifunctional MPAs. The trained RPNN accurately predicts the structural parameters and their corresponding absorption spectra with remarkable precision, yielding <i>R</i><sup>2</sup> values of 0.9981 and 0.9928, respectively. With this model, we successfully inverted the design of MPAs with three functions: broadband absorption, dual-band absorption, and triple-band absorption properties. A particularly noteworthy achievement was the realization of absorption bandwidth shifts using liquid crystal (LC) materials. Our RPNN showcases its proficiency in designing RMPAs with multifunctionality, all within a single network model. This marks a significant advancement over previous research methodologies. The proposed methodology holds great promise in diverse applications such as solar energy harvesting, detection, and filtration.</p></div>\",\"PeriodicalId\":736,\"journal\":{\"name\":\"Plasmonics\",\"volume\":\"19 4\",\"pages\":\"2011 - 2021\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11468-023-02133-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-023-02133-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In recent years, significant strides have been made in the inverse design of metamaterial perfect absorbers (MPAs) using deep learning techniques. However, this progress has been hindered by the functional homogeneity arising from the structural uniformity of the inverse-designed MPAs. In this paper, we address this limitation by designing reconfigurable MPAs (RMPAs) with three distinct structures and propose a residual parallel neural network (RPNN) that incorporates the optimized residual fully connected neural network (RFC-NN) for the inverse design of multifunctional MPAs. The trained RPNN accurately predicts the structural parameters and their corresponding absorption spectra with remarkable precision, yielding R2 values of 0.9981 and 0.9928, respectively. With this model, we successfully inverted the design of MPAs with three functions: broadband absorption, dual-band absorption, and triple-band absorption properties. A particularly noteworthy achievement was the realization of absorption bandwidth shifts using liquid crystal (LC) materials. Our RPNN showcases its proficiency in designing RMPAs with multifunctionality, all within a single network model. This marks a significant advancement over previous research methodologies. The proposed methodology holds great promise in diverse applications such as solar energy harvesting, detection, and filtration.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.