{"title":"可见光和近红外光谱超宽带纳米结构超材料吸收体","authors":"Zhipeng Gao","doi":"10.1007/s11468-023-02132-0","DOIUrl":null,"url":null,"abstract":"<div><p>This research investigates the design of a nanostructured metamaterial absorber, featuring a core composition of nickel (Ni) metallic patch surrounded by an inductive grid. The proposed Ni-based nano-absorber exhibits a remarkable absorption bandwidth, spanning both visible and short-infrared wavelengths, with an impressive average absorption efficiency of 90% from 400 to 2000 nm. This study comprehensively examines the absorption characteristics of the nano-absorber across a range of incident angles and polarization states of optical light. Notably, the absorber demonstrates a polarization-insensitive response due to the inherent four-fold symmetry within its nanoresonator design and gives a sizeable absorption for various incident angles. Furthermore, the paper also investigates the surface electric field for a deeper understanding of its performance. Additionally, an equivalent circuit model has been developed for the proposed nanostructured absorber, and a comparison between the simulated and analytical absorption shows a close agreement between them. The simple and easily fabricable design of this absorber makes it a promising candidate for diverse applications, encompassing energy harvesting, solar cells, photodetectors, etc. Furthermore, the straightforward and versatile geometry of the proposed nano-absorber can be readily adapted for use in different operating frequency spectra, including microwave and terahertz ranges.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"19 4","pages":"1961 - 1967"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrabroadband Nanostructured Metamaterial Absorber for Visible and Short-Infrared Spectrum\",\"authors\":\"Zhipeng Gao\",\"doi\":\"10.1007/s11468-023-02132-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research investigates the design of a nanostructured metamaterial absorber, featuring a core composition of nickel (Ni) metallic patch surrounded by an inductive grid. The proposed Ni-based nano-absorber exhibits a remarkable absorption bandwidth, spanning both visible and short-infrared wavelengths, with an impressive average absorption efficiency of 90% from 400 to 2000 nm. This study comprehensively examines the absorption characteristics of the nano-absorber across a range of incident angles and polarization states of optical light. Notably, the absorber demonstrates a polarization-insensitive response due to the inherent four-fold symmetry within its nanoresonator design and gives a sizeable absorption for various incident angles. Furthermore, the paper also investigates the surface electric field for a deeper understanding of its performance. Additionally, an equivalent circuit model has been developed for the proposed nanostructured absorber, and a comparison between the simulated and analytical absorption shows a close agreement between them. The simple and easily fabricable design of this absorber makes it a promising candidate for diverse applications, encompassing energy harvesting, solar cells, photodetectors, etc. Furthermore, the straightforward and versatile geometry of the proposed nano-absorber can be readily adapted for use in different operating frequency spectra, including microwave and terahertz ranges.</p></div>\",\"PeriodicalId\":736,\"journal\":{\"name\":\"Plasmonics\",\"volume\":\"19 4\",\"pages\":\"1961 - 1967\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11468-023-02132-0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-023-02132-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ultrabroadband Nanostructured Metamaterial Absorber for Visible and Short-Infrared Spectrum
This research investigates the design of a nanostructured metamaterial absorber, featuring a core composition of nickel (Ni) metallic patch surrounded by an inductive grid. The proposed Ni-based nano-absorber exhibits a remarkable absorption bandwidth, spanning both visible and short-infrared wavelengths, with an impressive average absorption efficiency of 90% from 400 to 2000 nm. This study comprehensively examines the absorption characteristics of the nano-absorber across a range of incident angles and polarization states of optical light. Notably, the absorber demonstrates a polarization-insensitive response due to the inherent four-fold symmetry within its nanoresonator design and gives a sizeable absorption for various incident angles. Furthermore, the paper also investigates the surface electric field for a deeper understanding of its performance. Additionally, an equivalent circuit model has been developed for the proposed nanostructured absorber, and a comparison between the simulated and analytical absorption shows a close agreement between them. The simple and easily fabricable design of this absorber makes it a promising candidate for diverse applications, encompassing energy harvesting, solar cells, photodetectors, etc. Furthermore, the straightforward and versatile geometry of the proposed nano-absorber can be readily adapted for use in different operating frequency spectra, including microwave and terahertz ranges.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.