基于可解释矩阵分解推荐系统的表达性潜在特征建模

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Abdullah Alhejaili, Shaheen Fatima
{"title":"基于可解释矩阵分解推荐系统的表达性潜在特征建模","authors":"Abdullah Alhejaili, Shaheen Fatima","doi":"https://dl.acm.org/doi/10.1145/3530299","DOIUrl":null,"url":null,"abstract":"<p>The traditional matrix factorisation (MF)-based recommender system methods, despite their success in making the recommendation, lack explainable recommendations as the produced latent features are meaningless and cannot explain the recommendation. This article introduces an MF-based explainable recommender system framework that utilises the user-item rating data and the available item information to model meaningful user and item latent features. These features are exploited to enhance the rating prediction accuracy and the recommendation explainability. Our proposed feature-based explainable recommender system framework utilises these meaningful user and item latent features to explain the recommendation without relying on private or outer data. The recommendations are explained to the user using text message and bar chart. Our proposed model has been evaluated in terms of the rating prediction accuracy and the reasonableness of the explanation using six real-world benchmark datasets for movies, books, video games, and fashion recommendation systems. The results show that the proposed model can produce accurate explainable recommendations.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expressive Latent Feature Modelling for Explainable Matrix Factorisation-based Recommender Systems\",\"authors\":\"Abdullah Alhejaili, Shaheen Fatima\",\"doi\":\"https://dl.acm.org/doi/10.1145/3530299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The traditional matrix factorisation (MF)-based recommender system methods, despite their success in making the recommendation, lack explainable recommendations as the produced latent features are meaningless and cannot explain the recommendation. This article introduces an MF-based explainable recommender system framework that utilises the user-item rating data and the available item information to model meaningful user and item latent features. These features are exploited to enhance the rating prediction accuracy and the recommendation explainability. Our proposed feature-based explainable recommender system framework utilises these meaningful user and item latent features to explain the recommendation without relying on private or outer data. The recommendations are explained to the user using text message and bar chart. Our proposed model has been evaluated in terms of the rating prediction accuracy and the reasonableness of the explanation using six real-world benchmark datasets for movies, books, video games, and fashion recommendation systems. The results show that the proposed model can produce accurate explainable recommendations.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3530299\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3530299","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

传统的基于矩阵分解(matrix factorization, MF)的推荐系统方法虽然在推荐方面取得了成功,但由于产生的潜在特征没有意义,无法解释推荐,因此缺乏可解释的推荐。本文介绍了一个基于mf的可解释推荐系统框架,该框架利用用户-物品评级数据和可用的物品信息来建模有意义的用户和物品潜在特征。利用这些特征来提高评级预测的准确性和推荐的可解释性。我们提出的基于特征的可解释推荐系统框架利用这些有意义的用户和项目潜在特征来解释推荐,而不依赖于私人或外部数据。这些建议是通过文本信息和条形图向用户解释的。我们提出的模型已经使用电影、书籍、视频游戏和时尚推荐系统的六个真实世界基准数据集,在评级预测准确性和解释的合理性方面进行了评估。结果表明,该模型能够产生准确的可解释推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expressive Latent Feature Modelling for Explainable Matrix Factorisation-based Recommender Systems

The traditional matrix factorisation (MF)-based recommender system methods, despite their success in making the recommendation, lack explainable recommendations as the produced latent features are meaningless and cannot explain the recommendation. This article introduces an MF-based explainable recommender system framework that utilises the user-item rating data and the available item information to model meaningful user and item latent features. These features are exploited to enhance the rating prediction accuracy and the recommendation explainability. Our proposed feature-based explainable recommender system framework utilises these meaningful user and item latent features to explain the recommendation without relying on private or outer data. The recommendations are explained to the user using text message and bar chart. Our proposed model has been evaluated in terms of the rating prediction accuracy and the reasonableness of the explanation using six real-world benchmark datasets for movies, books, video games, and fashion recommendation systems. The results show that the proposed model can produce accurate explainable recommendations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信