{"title":"锆石磷浓度的长期变化阻止了简单的岩石成因分类","authors":"C.E. Bucholz, J. Liebmann, C.J. Spencer","doi":"10.7185/geochemlet.2240","DOIUrl":null,"url":null,"abstract":"Phosphorus (P) concentrations in zircon have been used to discriminate their derivation from metaluminous <em>versus</em> strongly peraluminous granites (SPGs) based on the empirical observation of lower P concentrations in zircon from Phanerozoic metaluminous <em>versus</em> peraluminous granites. Higher P concentrations in zircon from Phanerozoic SPGs reflect enhanced apatite solubility in peraluminous melts and overall higher P concentrations in peraluminous granites. However, SPGs derived from partial melting of Precambrian sedimentary rocks have lower P concentrations compared to Phanerozoic metaluminous granites, reflecting lower P concentrations in Precambrian <em>versus</em> Phanerozoic sedimentary sources. We demonstrate that zircons from Precambrian SPGs also have lower P concentrations compared to Phanerozoic counterparts, likely reflecting lower P concentrations in their parental melts. Applying the P-in-zircon proxy to the detrital zircon record does not effectively discriminate between metaluminous and peraluminous sources and underestimates contributions from peraluminous granites. Although detrital zircons are an important early Earth archive, a uniformitarian perspective cannot always be applied when using trace element proxies developed on Phanerozoic samples.","PeriodicalId":12613,"journal":{"name":"Geochemical Perspectives Letters","volume":"1 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secular variability in zircon phosphorus concentrations prevents simple petrogenetic classification\",\"authors\":\"C.E. Bucholz, J. Liebmann, C.J. Spencer\",\"doi\":\"10.7185/geochemlet.2240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphorus (P) concentrations in zircon have been used to discriminate their derivation from metaluminous <em>versus</em> strongly peraluminous granites (SPGs) based on the empirical observation of lower P concentrations in zircon from Phanerozoic metaluminous <em>versus</em> peraluminous granites. Higher P concentrations in zircon from Phanerozoic SPGs reflect enhanced apatite solubility in peraluminous melts and overall higher P concentrations in peraluminous granites. However, SPGs derived from partial melting of Precambrian sedimentary rocks have lower P concentrations compared to Phanerozoic metaluminous granites, reflecting lower P concentrations in Precambrian <em>versus</em> Phanerozoic sedimentary sources. We demonstrate that zircons from Precambrian SPGs also have lower P concentrations compared to Phanerozoic counterparts, likely reflecting lower P concentrations in their parental melts. Applying the P-in-zircon proxy to the detrital zircon record does not effectively discriminate between metaluminous and peraluminous sources and underestimates contributions from peraluminous granites. Although detrital zircons are an important early Earth archive, a uniformitarian perspective cannot always be applied when using trace element proxies developed on Phanerozoic samples.\",\"PeriodicalId\":12613,\"journal\":{\"name\":\"Geochemical Perspectives Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemical Perspectives Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.7185/geochemlet.2240\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Perspectives Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.7185/geochemlet.2240","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Secular variability in zircon phosphorus concentrations prevents simple petrogenetic classification
Phosphorus (P) concentrations in zircon have been used to discriminate their derivation from metaluminous versus strongly peraluminous granites (SPGs) based on the empirical observation of lower P concentrations in zircon from Phanerozoic metaluminous versus peraluminous granites. Higher P concentrations in zircon from Phanerozoic SPGs reflect enhanced apatite solubility in peraluminous melts and overall higher P concentrations in peraluminous granites. However, SPGs derived from partial melting of Precambrian sedimentary rocks have lower P concentrations compared to Phanerozoic metaluminous granites, reflecting lower P concentrations in Precambrian versus Phanerozoic sedimentary sources. We demonstrate that zircons from Precambrian SPGs also have lower P concentrations compared to Phanerozoic counterparts, likely reflecting lower P concentrations in their parental melts. Applying the P-in-zircon proxy to the detrital zircon record does not effectively discriminate between metaluminous and peraluminous sources and underestimates contributions from peraluminous granites. Although detrital zircons are an important early Earth archive, a uniformitarian perspective cannot always be applied when using trace element proxies developed on Phanerozoic samples.
期刊介绍:
Geochemical Perspectives Letters is an open access, internationally peer-reviewed journal of the European Association of Geochemistry (EAG) that publishes short, highest-quality articles spanning geochemical sciences. The journal aims at rapid publication of the most novel research in geochemistry with a focus on outstanding quality, international importance, originality, and stimulating new developments across the vast array of geochemical disciplines.