变参数超几何函数值的Rodrigues公式与线性无关性

IF 0.5 4区 数学 Q3 MATHEMATICS
MAKOTO KAWASHIMA
{"title":"变参数超几何函数值的Rodrigues公式与线性无关性","authors":"MAKOTO KAWASHIMA","doi":"10.1017/s1446788723000186","DOIUrl":null,"url":null,"abstract":"In this article, we prove a generalized Rodrigues formula for a wide class of holonomic Laurent series, which yields a new linear independence criterion concerning their values at algebraic points. This generalization yields a new construction of Padé approximations including those for Gauss hypergeometric functions. In particular, we obtain a linear independence criterion over a number field concerning values of Gauss hypergeometric functions, allowing <jats:italic>the parameters of Gauss hypergeometric functions to vary.</jats:italic>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"28 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RODRIGUES FORMULA AND LINEAR INDEPENDENCE FOR VALUES OF HYPERGEOMETRIC FUNCTIONS WITH VARYING PARAMETERS\",\"authors\":\"MAKOTO KAWASHIMA\",\"doi\":\"10.1017/s1446788723000186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we prove a generalized Rodrigues formula for a wide class of holonomic Laurent series, which yields a new linear independence criterion concerning their values at algebraic points. This generalization yields a new construction of Padé approximations including those for Gauss hypergeometric functions. In particular, we obtain a linear independence criterion over a number field concerning values of Gauss hypergeometric functions, allowing <jats:italic>the parameters of Gauss hypergeometric functions to vary.</jats:italic>\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788723000186\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788723000186","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了一类广泛的完整Laurent级数的一个广义Rodrigues公式,得到了关于它们在代数点上的值的一个新的线性无关判据。这种推广产生了一种新的帕德约尔近似结构,包括高斯超几何函数的近似。特别地,我们得到了一个关于高斯超几何函数值的数域上的线性无关判据,允许高斯超几何函数的参数变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RODRIGUES FORMULA AND LINEAR INDEPENDENCE FOR VALUES OF HYPERGEOMETRIC FUNCTIONS WITH VARYING PARAMETERS
In this article, we prove a generalized Rodrigues formula for a wide class of holonomic Laurent series, which yields a new linear independence criterion concerning their values at algebraic points. This generalization yields a new construction of Padé approximations including those for Gauss hypergeometric functions. In particular, we obtain a linear independence criterion over a number field concerning values of Gauss hypergeometric functions, allowing the parameters of Gauss hypergeometric functions to vary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信