Shollie M. Falkenberg, Alexa Buckley, Paola Boggiatto
{"title":"PrimeFlow RNA检测作为SARS-CoV-2单次和双次感染检测方法的评价","authors":"Shollie M. Falkenberg, Alexa Buckley, Paola Boggiatto","doi":"10.1007/s10616-023-00608-9","DOIUrl":null,"url":null,"abstract":"<p>Given the implications of increased transmissibility, virulence, host range, and immune escapes of emerging variants of SARS-CoV-2, developing in vitro models that allow for detection of variants and differences in infection dynamics is important. The objective of this study, was to evaluate the PrimeFlow RNA in-situ assay as a method of detection for multiple strains of SARS-CoV-2. Evaluation of detection and infection statuses included single infections with an Alpha, Delta, or Omicron variants and dual infections with Alpha/Omicron or Delta/Omicron. RNA probes specific for the Spike protein coding region, were designed (omicron or non-omicron specific). SARS-CoV-2 RNA was detected in greater frequency in the Vero E6 and minimally in the fetal deer testicle cell lines by flow cytometry using this approach for viral detection of multiple variants. Most evident in the Vero E6 cells, 24 h post infection both Alpha and Delta predominated over Omicron in dual infections. This is the first report using the PrimeFlow assay for the detection of SARS-CoV-2 at the single-cell level and as a potential model for competition of variants utilizing infection dynamics in cell culture.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"31 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the PrimeFlow RNA assay as a method of detection of SARS-CoV-2 single and dual Infections\",\"authors\":\"Shollie M. Falkenberg, Alexa Buckley, Paola Boggiatto\",\"doi\":\"10.1007/s10616-023-00608-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given the implications of increased transmissibility, virulence, host range, and immune escapes of emerging variants of SARS-CoV-2, developing in vitro models that allow for detection of variants and differences in infection dynamics is important. The objective of this study, was to evaluate the PrimeFlow RNA in-situ assay as a method of detection for multiple strains of SARS-CoV-2. Evaluation of detection and infection statuses included single infections with an Alpha, Delta, or Omicron variants and dual infections with Alpha/Omicron or Delta/Omicron. RNA probes specific for the Spike protein coding region, were designed (omicron or non-omicron specific). SARS-CoV-2 RNA was detected in greater frequency in the Vero E6 and minimally in the fetal deer testicle cell lines by flow cytometry using this approach for viral detection of multiple variants. Most evident in the Vero E6 cells, 24 h post infection both Alpha and Delta predominated over Omicron in dual infections. This is the first report using the PrimeFlow assay for the detection of SARS-CoV-2 at the single-cell level and as a potential model for competition of variants utilizing infection dynamics in cell culture.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-023-00608-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00608-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Evaluation of the PrimeFlow RNA assay as a method of detection of SARS-CoV-2 single and dual Infections
Given the implications of increased transmissibility, virulence, host range, and immune escapes of emerging variants of SARS-CoV-2, developing in vitro models that allow for detection of variants and differences in infection dynamics is important. The objective of this study, was to evaluate the PrimeFlow RNA in-situ assay as a method of detection for multiple strains of SARS-CoV-2. Evaluation of detection and infection statuses included single infections with an Alpha, Delta, or Omicron variants and dual infections with Alpha/Omicron or Delta/Omicron. RNA probes specific for the Spike protein coding region, were designed (omicron or non-omicron specific). SARS-CoV-2 RNA was detected in greater frequency in the Vero E6 and minimally in the fetal deer testicle cell lines by flow cytometry using this approach for viral detection of multiple variants. Most evident in the Vero E6 cells, 24 h post infection both Alpha and Delta predominated over Omicron in dual infections. This is the first report using the PrimeFlow assay for the detection of SARS-CoV-2 at the single-cell level and as a potential model for competition of variants utilizing infection dynamics in cell culture.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.