{"title":"范畴论和k理论Donaldson-Thomas理论(下)","authors":"Tudor Pădurariu, Yukinobu Toda","doi":"10.1017/fms.2023.103","DOIUrl":null,"url":null,"abstract":"Quasi-BPS categories appear as summands in semiorthogonal decompositions of DT categories for Hilbert schemes of points in the three-dimensional affine space and in the categorical Hall algebra of the two-dimensional affine space. In this paper, we prove several properties of quasi-BPS categories analogous to BPS sheaves in cohomological DT theory. We first prove a categorical analogue of Davison’s support lemma, namely that complexes in the quasi-BPS categories for coprime length and weight are supported over the small diagonal in the symmetric product of the three-dimensional affine space. The categorical support lemma is used to determine the torsion-free generator of the torus equivariant K-theory of the quasi-BPS category of coprime length and weight. We next construct a bialgebra structure on the torsion free equivariant K-theory of quasi-BPS categories for a fixed ratio of length and weight. We define the K-theoretic BPS space as the space of primitive elements with respect to the coproduct. We show that all localized equivariant K-theoretic BPS spaces are one-dimensional, which is a K-theoretic analogue of the computation of (numerical) BPS invariants of the three-dimensional affine space.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Categorical and K-theoretic Donaldson–Thomas theory of (part II)\",\"authors\":\"Tudor Pădurariu, Yukinobu Toda\",\"doi\":\"10.1017/fms.2023.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasi-BPS categories appear as summands in semiorthogonal decompositions of DT categories for Hilbert schemes of points in the three-dimensional affine space and in the categorical Hall algebra of the two-dimensional affine space. In this paper, we prove several properties of quasi-BPS categories analogous to BPS sheaves in cohomological DT theory. We first prove a categorical analogue of Davison’s support lemma, namely that complexes in the quasi-BPS categories for coprime length and weight are supported over the small diagonal in the symmetric product of the three-dimensional affine space. The categorical support lemma is used to determine the torsion-free generator of the torus equivariant K-theory of the quasi-BPS category of coprime length and weight. We next construct a bialgebra structure on the torsion free equivariant K-theory of quasi-BPS categories for a fixed ratio of length and weight. We define the K-theoretic BPS space as the space of primitive elements with respect to the coproduct. We show that all localized equivariant K-theoretic BPS spaces are one-dimensional, which is a K-theoretic analogue of the computation of (numerical) BPS invariants of the three-dimensional affine space.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.103\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.103","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Categorical and K-theoretic Donaldson–Thomas theory of (part II)
Quasi-BPS categories appear as summands in semiorthogonal decompositions of DT categories for Hilbert schemes of points in the three-dimensional affine space and in the categorical Hall algebra of the two-dimensional affine space. In this paper, we prove several properties of quasi-BPS categories analogous to BPS sheaves in cohomological DT theory. We first prove a categorical analogue of Davison’s support lemma, namely that complexes in the quasi-BPS categories for coprime length and weight are supported over the small diagonal in the symmetric product of the three-dimensional affine space. The categorical support lemma is used to determine the torsion-free generator of the torus equivariant K-theory of the quasi-BPS category of coprime length and weight. We next construct a bialgebra structure on the torsion free equivariant K-theory of quasi-BPS categories for a fixed ratio of length and weight. We define the K-theoretic BPS space as the space of primitive elements with respect to the coproduct. We show that all localized equivariant K-theoretic BPS spaces are one-dimensional, which is a K-theoretic analogue of the computation of (numerical) BPS invariants of the three-dimensional affine space.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.