{"title":"p进场绝对伽罗瓦群特征p中的泛伪变形环的等维性","authors":"Gebhard Böckle, Ann-Kristin Juschka","doi":"10.1017/fms.2023.82","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>K</jats:italic> be a finite extension of the p-adic field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline1.png\" /> <jats:tex-math> ${\\mathbb {Q}}_p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of degree <jats:italic>d</jats:italic>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline2.png\" /> <jats:tex-math> ${{\\mathbb {F}}\\,\\!{}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a finite field of characteristic <jats:italic>p</jats:italic> and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline3.png\" /> <jats:tex-math> ${\\overline {{D}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an <jats:italic>n</jats:italic>-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of <jats:italic>K</jats:italic> over the field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline4.png\" /> <jats:tex-math> ${{\\mathbb {F}}\\,\\!{}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For the universal mod <jats:italic>p</jats:italic> pseudodeformation ring <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline5.png\" /> <jats:tex-math> ${\\overline {R}{{\\phantom {\\overline {\\overline m}}}}^{\\operatorname {univ}}_{{{\\overline {{D}}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline6.png\" /> <jats:tex-math> ${\\overline {{D}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove the following: The ring <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline7.png\" /> <jats:tex-math> $\\overline R_{{\\overline {{D}}}}^{\\mathrm {ps}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is equidimensional of dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline8.png\" /> <jats:tex-math> $dn^2+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Its reduced quotient <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline9.png\" /> <jats:tex-math> ${\\overline {R}{{\\phantom {\\overline {\\overline m}}}}^{\\operatorname {univ}}_{{{\\overline {{D}}},{\\operatorname {red}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains a dense open subset of regular points <jats:italic>x</jats:italic> whose associated pseudocharacter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline10.png\" /> <jats:tex-math> ${D}_x$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is absolutely irreducible and <jats:italic>nonspecial</jats:italic> in a certain technical sense that we shall define. Moreover, we will characterize in most cases when <jats:italic>K</jats:italic> does not contain a <jats:italic>p</jats:italic>-th root of unity the singular locus of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline11.png\" /> <jats:tex-math> ${\\mathrm {Spec}}\\ {\\overline {R}{{\\phantom {\\overline {\\overline m}}}}^{\\operatorname {univ}}_{{{\\overline {{D}}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline12.png\" /> <jats:tex-math> ${R{{\\phantom {\\overline {m}}}}^{\\operatorname {univ}}_{{{\\overline {D}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline13.png\" /> <jats:tex-math> ${\\overline {{D}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields\",\"authors\":\"Gebhard Böckle, Ann-Kristin Juschka\",\"doi\":\"10.1017/fms.2023.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>K</jats:italic> be a finite extension of the p-adic field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline1.png\\\" /> <jats:tex-math> ${\\\\mathbb {Q}}_p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of degree <jats:italic>d</jats:italic>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline2.png\\\" /> <jats:tex-math> ${{\\\\mathbb {F}}\\\\,\\\\!{}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a finite field of characteristic <jats:italic>p</jats:italic> and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline3.png\\\" /> <jats:tex-math> ${\\\\overline {{D}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an <jats:italic>n</jats:italic>-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of <jats:italic>K</jats:italic> over the field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline4.png\\\" /> <jats:tex-math> ${{\\\\mathbb {F}}\\\\,\\\\!{}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For the universal mod <jats:italic>p</jats:italic> pseudodeformation ring <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline5.png\\\" /> <jats:tex-math> ${\\\\overline {R}{{\\\\phantom {\\\\overline {\\\\overline m}}}}^{\\\\operatorname {univ}}_{{{\\\\overline {{D}}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline6.png\\\" /> <jats:tex-math> ${\\\\overline {{D}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove the following: The ring <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline7.png\\\" /> <jats:tex-math> $\\\\overline R_{{\\\\overline {{D}}}}^{\\\\mathrm {ps}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is equidimensional of dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline8.png\\\" /> <jats:tex-math> $dn^2+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Its reduced quotient <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline9.png\\\" /> <jats:tex-math> ${\\\\overline {R}{{\\\\phantom {\\\\overline {\\\\overline m}}}}^{\\\\operatorname {univ}}_{{{\\\\overline {{D}}},{\\\\operatorname {red}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains a dense open subset of regular points <jats:italic>x</jats:italic> whose associated pseudocharacter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline10.png\\\" /> <jats:tex-math> ${D}_x$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is absolutely irreducible and <jats:italic>nonspecial</jats:italic> in a certain technical sense that we shall define. Moreover, we will characterize in most cases when <jats:italic>K</jats:italic> does not contain a <jats:italic>p</jats:italic>-th root of unity the singular locus of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline11.png\\\" /> <jats:tex-math> ${\\\\mathrm {Spec}}\\\\ {\\\\overline {R}{{\\\\phantom {\\\\overline {\\\\overline m}}}}^{\\\\operatorname {univ}}_{{{\\\\overline {{D}}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline12.png\\\" /> <jats:tex-math> ${R{{\\\\phantom {\\\\overline {m}}}}^{\\\\operatorname {univ}}_{{{\\\\overline {D}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423000828_inline13.png\\\" /> <jats:tex-math> ${\\\\overline {{D}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.82\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.82","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
Let K be a finite extension of the p-adic field ${\mathbb {Q}}_p$ of degree d, let ${{\mathbb {F}}\,\!{}}$ be a finite field of characteristic p and let ${\overline {{D}}}$ be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field ${{\mathbb {F}}\,\!{}}$ . For the universal mod p pseudodeformation ring ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ of ${\overline {{D}}}$ , we prove the following: The ring $\overline R_{{\overline {{D}}}}^{\mathrm {ps}}$ is equidimensional of dimension $dn^2+1$ . Its reduced quotient ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}},{\operatorname {red}}}}}$ contains a dense open subset of regular points x whose associated pseudocharacter ${D}_x$ is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of ${\mathrm {Spec}}\ {\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ . Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring ${R{{\phantom {\overline {m}}}}^{\operatorname {univ}}_{{{\overline {D}}}}}$ of ${\overline {{D}}}$ .
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.