阈值图最大化同态密度

Grigoriy Blekherman, Shyamal Patel
{"title":"阈值图最大化同态密度","authors":"Grigoriy Blekherman, Shyamal Patel","doi":"10.1017/s096354832300041x","DOIUrl":null,"url":null,"abstract":"Given a fixed graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline1.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a constant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline2.png\" /> <jats:tex-math> $c \\in [0,1]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we can ask what graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline3.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with edge density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline4.png\" /> <jats:tex-math> $c$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> asymptotically maximise the homomorphism density of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline5.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline6.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline7.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which this problem has been solved, the maximum is always asymptotically attained on one of two kinds of graphs: the quasi-star or the quasi-clique. We show that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline8.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> the maximising <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline9.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is asymptotically a threshold graph, while the quasi-clique and the quasi-star are the simplest threshold graphs, having only two parts. This result gives us a unified framework to derive a number of results on graph homomorphism maximisation, some of which were also found quite recently and independently using several different approaches. We show that there exist graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline10.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and densities <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline11.png\" /> <jats:tex-math> $c$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the optimising graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline12.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is neither the quasi-star nor the quasi-clique (Day and Sarkar, <jats:italic>SIAM J. Discrete Math.</jats:italic> 35(1), 294–306, 2021). We also show that for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline13.png\" /> <jats:tex-math> $c$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> large enough all graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline14.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> maximise on the quasi-clique (Gerbner et al., <jats:italic>J. Graph Theory</jats:italic> 96(1), 34–43, 2021), and for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline15.png\" /> <jats:tex-math> $c \\in [0,1]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> the density of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300041X_inline16.png\" /> <jats:tex-math> $K_{1,2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is always maximised on either the quasi-star or the quasi-clique (Ahlswede and Katona, <jats:italic>Acta Math. Hung.</jats:italic> 32(1–2), 97–120, 1978). Finally, we extend our results to uniform hypergraphs.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threshold graphs maximise homomorphism densities\",\"authors\":\"Grigoriy Blekherman, Shyamal Patel\",\"doi\":\"10.1017/s096354832300041x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a fixed graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline1.png\\\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a constant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline2.png\\\" /> <jats:tex-math> $c \\\\in [0,1]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we can ask what graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline3.png\\\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with edge density <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline4.png\\\" /> <jats:tex-math> $c$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> asymptotically maximise the homomorphism density of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline5.png\\\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline6.png\\\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline7.png\\\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which this problem has been solved, the maximum is always asymptotically attained on one of two kinds of graphs: the quasi-star or the quasi-clique. We show that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline8.png\\\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> the maximising <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline9.png\\\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is asymptotically a threshold graph, while the quasi-clique and the quasi-star are the simplest threshold graphs, having only two parts. This result gives us a unified framework to derive a number of results on graph homomorphism maximisation, some of which were also found quite recently and independently using several different approaches. We show that there exist graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline10.png\\\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and densities <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline11.png\\\" /> <jats:tex-math> $c$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the optimising graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline12.png\\\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is neither the quasi-star nor the quasi-clique (Day and Sarkar, <jats:italic>SIAM J. Discrete Math.</jats:italic> 35(1), 294–306, 2021). We also show that for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline13.png\\\" /> <jats:tex-math> $c$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> large enough all graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline14.png\\\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> maximise on the quasi-clique (Gerbner et al., <jats:italic>J. Graph Theory</jats:italic> 96(1), 34–43, 2021), and for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline15.png\\\" /> <jats:tex-math> $c \\\\in [0,1]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> the density of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S096354832300041X_inline16.png\\\" /> <jats:tex-math> $K_{1,2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is always maximised on either the quasi-star or the quasi-clique (Ahlswede and Katona, <jats:italic>Acta Math. Hung.</jats:italic> 32(1–2), 97–120, 1978). Finally, we extend our results to uniform hypergraphs.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s096354832300041x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s096354832300041x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个固定的图$H$和一个常数$c \in[0,1]$,我们可以问哪些具有边密度$c$的图$G$渐近地最大化$H$在$G$中的同态密度。对于所有解出这个问题的$H$,最大值总是在拟星形图或拟团形图两类图之一上渐近得到。我们证明了对于任意$H$,最大$G$渐近是一个阈值图,而拟团和拟星形是最简单的阈值图,只有两个部分。这一结果为我们提供了一个统一的框架来推导图同态最大化的一些结果,其中一些结果也是最近发现的,并且是使用几种不同的方法独立发现的。我们证明存在图$H$和密度$c$,使得优化图$G$既不是准星形也不是准团形(Day and Sarkar, SIAM J.离散数学,35(1),294 - 306,2021)。我们还证明了对于足够大的$c$,所有图$H$在拟团上最大化(Gerbner et al., J.图论96(1),34 - 43,2021),并且对于任意$c \in [0,1]$, $K_{1,2}$的密度总是在拟星或拟团上最大化(Ahlswede和Katona, Acta Math)。洪。32(1-2),97-120,1978)。最后,我们将结果扩展到一致超图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Threshold graphs maximise homomorphism densities
Given a fixed graph $H$ and a constant $c \in [0,1]$ , we can ask what graphs $G$ with edge density $c$ asymptotically maximise the homomorphism density of $H$ in $G$ . For all $H$ for which this problem has been solved, the maximum is always asymptotically attained on one of two kinds of graphs: the quasi-star or the quasi-clique. We show that for any $H$ the maximising $G$ is asymptotically a threshold graph, while the quasi-clique and the quasi-star are the simplest threshold graphs, having only two parts. This result gives us a unified framework to derive a number of results on graph homomorphism maximisation, some of which were also found quite recently and independently using several different approaches. We show that there exist graphs $H$ and densities $c$ such that the optimising graph $G$ is neither the quasi-star nor the quasi-clique (Day and Sarkar, SIAM J. Discrete Math. 35(1), 294–306, 2021). We also show that for $c$ large enough all graphs $H$ maximise on the quasi-clique (Gerbner et al., J. Graph Theory 96(1), 34–43, 2021), and for any $c \in [0,1]$ the density of $K_{1,2}$ is always maximised on either the quasi-star or the quasi-clique (Ahlswede and Katona, Acta Math. Hung. 32(1–2), 97–120, 1978). Finally, we extend our results to uniform hypergraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信