关于临界图中边的最大数目

Cong Luo, Jie Ma, Tianchi Yang
{"title":"关于临界图中边的最大数目","authors":"Cong Luo, Jie Ma, Tianchi Yang","doi":"10.1017/s0963548323000238","DOIUrl":null,"url":null,"abstract":"<p>A graph is called <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-critical if its chromatic number is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> but every proper subgraph has chromatic number less than <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>. An old and important problem in graph theory asks to determine the maximum number of edges in an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>-vertex <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-critical graph. This is widely open for every integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$k\\geq 4$</span></span></img></span></span>. Using a structural characterisation of Greenwell and Lovász and an extremal result of Simonovits, Stiebitz proved in 1987 that for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$k\\geq 4$</span></span></img></span></span> and sufficiently large <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>, this maximum number is less than the number of edges in the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>-vertex balanced complete <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$(k-2)$</span></span></span></span>-partite graph. In this paper, we obtain the first improvement in the above result in the past 35 years. Our proofs combine arguments from extremal graph theory as well as some structural analysis. A key lemma we use indicates a partial structure in dense <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$k$</span></span></span></span>-critical graphs, which may be of independent interest.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the maximum number of edges in -critical graphs\",\"authors\":\"Cong Luo, Jie Ma, Tianchi Yang\",\"doi\":\"10.1017/s0963548323000238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A graph is called <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-critical if its chromatic number is <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span> but every proper subgraph has chromatic number less than <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>. An old and important problem in graph theory asks to determine the maximum number of edges in an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span>-vertex <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-critical graph. This is widely open for every integer <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k\\\\geq 4$</span></span></img></span></span>. Using a structural characterisation of Greenwell and Lovász and an extremal result of Simonovits, Stiebitz proved in 1987 that for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k\\\\geq 4$</span></span></img></span></span> and sufficiently large <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span>, this maximum number is less than the number of edges in the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span>-vertex balanced complete <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline11.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$(k-2)$</span></span></span></span>-partite graph. In this paper, we obtain the first improvement in the above result in the past 35 years. Our proofs combine arguments from extremal graph theory as well as some structural analysis. A key lemma we use indicates a partial structure in dense <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000238:S0963548323000238_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></span></span>-critical graphs, which may be of independent interest.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果图的色数为$k$,则图称为$k$临界图,但每个固有子图的色数都小于$k$。图论中一个古老而重要的问题是确定$n$ -顶点$k$ -临界图的最大边数。这对所有整数$k\geq 4$都是开放的。1987年,Stiebitz利用Greenwell和Lovász的结构表征以及Simonovits的极值结果证明,对于$k\geq 4$和足够大的$n$,该最大值小于$n$ -顶点平衡的完全$(k-2)$ -部图中的边数。在本文中,我们在过去的35年中首次获得了上述结果的改进。我们的证明结合了极值图论的论证以及一些结构分析。我们使用的一个关键引理表示密集$k$临界图中的部分结构,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the maximum number of edges in -critical graphs

A graph is called $k$-critical if its chromatic number is $k$ but every proper subgraph has chromatic number less than $k$. An old and important problem in graph theory asks to determine the maximum number of edges in an $n$-vertex $k$-critical graph. This is widely open for every integer $k\geq 4$. Using a structural characterisation of Greenwell and Lovász and an extremal result of Simonovits, Stiebitz proved in 1987 that for $k\geq 4$ and sufficiently large $n$, this maximum number is less than the number of edges in the $n$-vertex balanced complete $(k-2)$-partite graph. In this paper, we obtain the first improvement in the above result in the past 35 years. Our proofs combine arguments from extremal graph theory as well as some structural analysis. A key lemma we use indicates a partial structure in dense $k$-critical graphs, which may be of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信