馀度Turán紧环的密度减去一条边

Simón Piga, Marcelo Sales, Bjarne Schülke
{"title":"馀度Turán紧环的密度减去一条边","authors":"Simón Piga, Marcelo Sales, Bjarne Schülke","doi":"10.1017/s0963548323000196","DOIUrl":null,"url":null,"abstract":"<p>Given <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\alpha \\gt 0$</span></span></img></span></span> and an integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\ell \\geq 5$</span></span></img></span></span>, we prove that every sufficiently large <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$3$</span></span></img></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span> vertices in which every two vertices are contained in at least <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\alpha n$</span></span></img></span></span> edges contains a copy of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$C_\\ell ^{-}$</span></span></img></span></span>, a tight cycle on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\ell$</span></span></img></span></span> vertices minus one edge. This improves a previous result by Balogh, Clemen, and Lidický.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The codegree Turán density of tight cycles minus one edge\",\"authors\":\"Simón Piga, Marcelo Sales, Bjarne Schülke\",\"doi\":\"10.1017/s0963548323000196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\alpha \\\\gt 0$</span></span></img></span></span> and an integer <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\ell \\\\geq 5$</span></span></img></span></span>, we prove that every sufficiently large <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$3$</span></span></img></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span> on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span> vertices in which every two vertices are contained in at least <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\alpha n$</span></span></img></span></span> edges contains a copy of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C_\\\\ell ^{-}$</span></span></img></span></span>, a tight cycle on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231006153727984-0672:S0963548323000196:S0963548323000196_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\ell$</span></span></img></span></span> vertices minus one edge. This improves a previous result by Balogh, Clemen, and Lidický.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给定$\alpha \gt 0$和一个整数$\ell \geq 5$,我们证明了$n$顶点上每一个足够大的$3$ -均匀超图$H$,其中每两个顶点至少包含$\alpha n$条边,其中包含$C_\ell ^{-}$的副本,即$\ell$顶点上的紧环减去一条边。这改进了先前由Balogh、Clemen和Lidický得出的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The codegree Turán density of tight cycles minus one edge

Given $\alpha \gt 0$ and an integer $\ell \geq 5$, we prove that every sufficiently large $3$-uniform hypergraph $H$ on $n$ vertices in which every two vertices are contained in at least $\alpha n$ edges contains a copy of $C_\ell ^{-}$, a tight cycle on $\ell$ vertices minus one edge. This improves a previous result by Balogh, Clemen, and Lidický.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信