Maria Axenovich, Domagoj Bradač, Lior Gishboliner, Dhruv Mubayi, Lea Weber
{"title":"具有禁止序大小对的超图中的大团或共团","authors":"Maria Axenovich, Domagoj Bradač, Lior Gishboliner, Dhruv Mubayi, Lea Weber","doi":"10.1017/s0963548323000433","DOIUrl":null,"url":null,"abstract":"The well-known Erdős-Hajnal conjecture states that for any graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline1.png\" /> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline2.png\" /> <jats:tex-math> $\\epsilon \\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline3.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline4.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> that contains no induced copy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline5.png\" /> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has a homogeneous set of size at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline6.png\" /> <jats:tex-math> $n^{\\epsilon }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We consider a variant of the Erdős-Hajnal problem for hypergraphs where we forbid a family of hypergraphs described by their orders and sizes. For graphs, we observe that if we forbid induced subgraphs on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline7.png\" /> <jats:tex-math> $m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline8.png\" /> <jats:tex-math> $f$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges for any positive <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline9.png\" /> <jats:tex-math> $m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline10.png\" /> <jats:tex-math> $0\\leq f \\leq \\binom{m}{2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we obtain large homogeneous sets. For triple systems, in the first nontrivial case <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline11.png\" /> <jats:tex-math> $m=4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline12.png\" /> <jats:tex-math> $S \\subseteq \\{0,1,2,3,4\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we give bounds on the minimum size of a homogeneous set in a triple system where the number of edges spanned by every four vertices is not in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline13.png\" /> <jats:tex-math> $S$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In most cases the bounds are essentially tight. We also determine, for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000433_inline14.png\" /> <jats:tex-math> $S$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, whether the growth rate is polynomial or polylogarithmic. Some open problems remain.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large cliques or cocliques in hypergraphs with forbidden order-size pairs\",\"authors\":\"Maria Axenovich, Domagoj Bradač, Lior Gishboliner, Dhruv Mubayi, Lea Weber\",\"doi\":\"10.1017/s0963548323000433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The well-known Erdős-Hajnal conjecture states that for any graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline1.png\\\" /> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline2.png\\\" /> <jats:tex-math> $\\\\epsilon \\\\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline3.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline4.png\\\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> that contains no induced copy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline5.png\\\" /> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has a homogeneous set of size at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline6.png\\\" /> <jats:tex-math> $n^{\\\\epsilon }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We consider a variant of the Erdős-Hajnal problem for hypergraphs where we forbid a family of hypergraphs described by their orders and sizes. For graphs, we observe that if we forbid induced subgraphs on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline7.png\\\" /> <jats:tex-math> $m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline8.png\\\" /> <jats:tex-math> $f$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges for any positive <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline9.png\\\" /> <jats:tex-math> $m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline10.png\\\" /> <jats:tex-math> $0\\\\leq f \\\\leq \\\\binom{m}{2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then we obtain large homogeneous sets. For triple systems, in the first nontrivial case <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline11.png\\\" /> <jats:tex-math> $m=4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline12.png\\\" /> <jats:tex-math> $S \\\\subseteq \\\\{0,1,2,3,4\\\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we give bounds on the minimum size of a homogeneous set in a triple system where the number of edges spanned by every four vertices is not in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline13.png\\\" /> <jats:tex-math> $S$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In most cases the bounds are essentially tight. We also determine, for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548323000433_inline14.png\\\" /> <jats:tex-math> $S$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, whether the growth rate is polynomial or polylogarithmic. Some open problems remain.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
众所周知的Erdős-Hajnal猜想指出,对于任何图$F$,存在$\epsilon \gt 0$使得每个不包含$F$的诱导副本的$n$顶点图$G$都有一个大小至少为$n^{\epsilon }$的齐次集合。我们考虑超图Erdős-Hajnal问题的一个变体,在这个问题中,我们禁止一组由它们的顺序和大小描述的超图。对于图,我们观察到,如果我们对任意正的$m$和$0\leq f \leq \binom{m}{2}$禁止$m$顶点和$f$边上的诱导子图,那么我们得到了大的齐次集。对于三重系统,在第一个非平凡情况$m=4$中,对于每个$S \subseteq \{0,1,2,3,4\}$,我们给出了三重系统中齐次集合的最小大小的边界,其中每四个顶点张成的边的数量不在$S$中。在大多数情况下,边界本质上是紧的。我们还确定,对于所有$S$,增长率是多项式还是多对数。一些悬而未决的问题依然存在。
Large cliques or cocliques in hypergraphs with forbidden order-size pairs
The well-known Erdős-Hajnal conjecture states that for any graph $F$ , there exists $\epsilon \gt 0$ such that every $n$ -vertex graph $G$ that contains no induced copy of $F$ has a homogeneous set of size at least $n^{\epsilon }$ . We consider a variant of the Erdős-Hajnal problem for hypergraphs where we forbid a family of hypergraphs described by their orders and sizes. For graphs, we observe that if we forbid induced subgraphs on $m$ vertices and $f$ edges for any positive $m$ and $0\leq f \leq \binom{m}{2}$ , then we obtain large homogeneous sets. For triple systems, in the first nontrivial case $m=4$ , for every $S \subseteq \{0,1,2,3,4\}$ , we give bounds on the minimum size of a homogeneous set in a triple system where the number of edges spanned by every four vertices is not in $S$ . In most cases the bounds are essentially tight. We also determine, for all $S$ , whether the growth rate is polynomial or polylogarithmic. Some open problems remain.