关于Kohayakawa-Kreuter猜想的0陈述

Joseph Hyde
{"title":"关于Kohayakawa-Kreuter猜想的0陈述","authors":"Joseph Hyde","doi":"10.1017/s0963548322000219","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study asymmetric Ramsey properties of the random graph <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline1.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G_{n,p}$\n</span></span>\n</span>\n</span>. Let <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline2.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$r \\in \\mathbb{N}$\n</span></span>\n</span>\n</span> and <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline3.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$H_1, \\ldots, H_r$\n</span></span>\n</span>\n</span> be graphs. We write <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline4.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G_{n,p} \\to (H_1, \\ldots, H_r)$\n</span></span>\n</span>\n</span> to denote the property that whenever we colour the edges of <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline5.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G_{n,p}$\n</span></span>\n</span>\n</span> with colours from the set <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline6.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$[r] \\,{:\\!=}\\, \\{1, \\ldots, r\\}$\n</span></span>\n</span>\n</span> there exists <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline7.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$i \\in [r]$\n</span></span>\n</span>\n</span> and a copy of <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline8.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$H_i$\n</span></span>\n</span>\n</span> in <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline9.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G_{n,p}$\n</span></span>\n</span>\n</span> monochromatic in colour <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline10.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$i$\n</span></span>\n</span>\n</span>. There has been much interest in determining the asymptotic threshold function for this property. In several papers, Rödl and Ruciński determined a threshold function for the general symmetric case; that is, when <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline11.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$H_1 = \\cdots = H_r$\n</span></span>\n</span>\n</span>. A conjecture of Kohayakawa and Kreuter from 1997, if true, would fully resolve the asymmetric problem. Recently, the <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline12.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$1$\n</span></span>\n</span>\n</span>-statement of this conjecture was confirmed by Mousset, Nenadov and Samotij.</p>\n<p>Building on work of Marciniszyn, Skokan, Spöhel and Steger from 2009, we reduce the <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline13.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$0$\n</span></span>\n</span>\n</span>-statement of Kohayakawa and Kreuter’s conjecture to a certain deterministic subproblem. To demonstrate the potential of this approach, we show this subproblem can be resolved for almost all pairs of regular graphs. This therefore resolves the <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline14.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$0$\n</span></span>\n</span>\n</span>-statement for all such pairs of graphs.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards the 0-statement of the Kohayakawa-Kreuter conjecture\",\"authors\":\"Joseph Hyde\",\"doi\":\"10.1017/s0963548322000219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study asymmetric Ramsey properties of the random graph <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline1.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$G_{n,p}$\\n</span></span>\\n</span>\\n</span>. Let <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline2.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$r \\\\in \\\\mathbb{N}$\\n</span></span>\\n</span>\\n</span> and <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline3.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$H_1, \\\\ldots, H_r$\\n</span></span>\\n</span>\\n</span> be graphs. We write <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline4.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$G_{n,p} \\\\to (H_1, \\\\ldots, H_r)$\\n</span></span>\\n</span>\\n</span> to denote the property that whenever we colour the edges of <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline5.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$G_{n,p}$\\n</span></span>\\n</span>\\n</span> with colours from the set <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline6.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$[r] \\\\,{:\\\\!=}\\\\, \\\\{1, \\\\ldots, r\\\\}$\\n</span></span>\\n</span>\\n</span> there exists <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline7.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$i \\\\in [r]$\\n</span></span>\\n</span>\\n</span> and a copy of <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline8.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$H_i$\\n</span></span>\\n</span>\\n</span> in <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline9.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$G_{n,p}$\\n</span></span>\\n</span>\\n</span> monochromatic in colour <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline10.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$i$\\n</span></span>\\n</span>\\n</span>. There has been much interest in determining the asymptotic threshold function for this property. In several papers, Rödl and Ruciński determined a threshold function for the general symmetric case; that is, when <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline11.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$H_1 = \\\\cdots = H_r$\\n</span></span>\\n</span>\\n</span>. A conjecture of Kohayakawa and Kreuter from 1997, if true, would fully resolve the asymmetric problem. Recently, the <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline12.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$1$\\n</span></span>\\n</span>\\n</span>-statement of this conjecture was confirmed by Mousset, Nenadov and Samotij.</p>\\n<p>Building on work of Marciniszyn, Skokan, Spöhel and Steger from 2009, we reduce the <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline13.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$0$\\n</span></span>\\n</span>\\n</span>-statement of Kohayakawa and Kreuter’s conjecture to a certain deterministic subproblem. To demonstrate the potential of this approach, we show this subproblem can be resolved for almost all pairs of regular graphs. This therefore resolves the <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230206124632469-0262:S0963548322000219:S0963548322000219_inline14.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$0$\\n</span></span>\\n</span>\\n</span>-statement for all such pairs of graphs.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548322000219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548322000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了随机图$G_{n,p}$的非对称Ramsey性质。设$r \in \mathbb{N}$和$H_1, \ldots, H_r$为图。我们把$G_{n,p} \写成(H_1, \ldots, H_r)$来表示这样一个性质:当我们用集合$[r] \,{:\!=}\, \{1, \ldots, r\}$在[r]$中存在$i \,在$G_{n,p}$中存在$H_i$的副本。人们对确定这个性质的渐近阈值函数很感兴趣。在几篇论文中,Rödl和Ruciński确定了一般对称情况的阈值函数;即$H_1 = \cdots = H_r$。Kohayakawa和Kreuter在1997年提出的一个猜想,如果成立,将完全解决不对称问题。最近,这个猜想的$1$陈述被Mousset, Nenadov和Samotij证实。在Marciniszyn, Skokan, Spöhel和Steger(2009)的工作基础上,我们将Kohayakawa和Kreuter猜想的$0$-表述约简为一个确定性子问题。为了证明这种方法的潜力,我们展示了几乎所有正则图对都可以解决这个子问题。因此,这解决了所有这类图对的$0$-语句。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards the 0-statement of the Kohayakawa-Kreuter conjecture

In this paper, we study asymmetric Ramsey properties of the random graph $G_{n,p}$ . Let $r \in \mathbb{N}$ and $H_1, \ldots, H_r$ be graphs. We write $G_{n,p} \to (H_1, \ldots, H_r)$ to denote the property that whenever we colour the edges of $G_{n,p}$ with colours from the set $[r] \,{:\!=}\, \{1, \ldots, r\}$ there exists $i \in [r]$ and a copy of $H_i$ in $G_{n,p}$ monochromatic in colour $i$ . There has been much interest in determining the asymptotic threshold function for this property. In several papers, Rödl and Ruciński determined a threshold function for the general symmetric case; that is, when $H_1 = \cdots = H_r$ . A conjecture of Kohayakawa and Kreuter from 1997, if true, would fully resolve the asymmetric problem. Recently, the $1$ -statement of this conjecture was confirmed by Mousset, Nenadov and Samotij.

Building on work of Marciniszyn, Skokan, Spöhel and Steger from 2009, we reduce the $0$ -statement of Kohayakawa and Kreuter’s conjecture to a certain deterministic subproblem. To demonstrate the potential of this approach, we show this subproblem can be resolved for almost all pairs of regular graphs. This therefore resolves the $0$ -statement for all such pairs of graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信