Erdős-McKay猜想的二分版本

Eoin Long, Laurenţiu Ploscaru
{"title":"Erdős-McKay猜想的二分版本","authors":"Eoin Long, Laurenţiu Ploscaru","doi":"10.1017/s0963548322000347","DOIUrl":null,"url":null,"abstract":"<p>An old conjecture of Erdős and McKay states that if all homogeneous sets in an <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline1.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$n$\n</span></span>\n</span>\n</span>-vertex graph are of order <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline2.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$O(\\!\\log n)$\n</span></span>\n</span>\n</span> then the graph contains induced subgraphs of each size from <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline3.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$\\{0,1,\\ldots, \\Omega \\big(n^2\\big)\\}$\n</span></span>\n</span>\n</span>. We prove a bipartite analogue of the conjecture: if all balanced homogeneous sets in an <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline4.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$n \\times n$\n</span></span>\n</span>\n</span> bipartite graph are of order <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline5.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$O(\\!\\log n)$\n</span></span>\n</span>\n</span>, then the graph contains induced subgraphs of each size from <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline6.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$\\{0,1,\\ldots, \\Omega \\big(n^2\\big)\\}$\n</span></span>\n</span>\n</span>.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bipartite version of the Erdős–McKay conjecture\",\"authors\":\"Eoin Long, Laurenţiu Ploscaru\",\"doi\":\"10.1017/s0963548322000347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An old conjecture of Erdős and McKay states that if all homogeneous sets in an <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline1.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$n$\\n</span></span>\\n</span>\\n</span>-vertex graph are of order <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline2.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$O(\\\\!\\\\log n)$\\n</span></span>\\n</span>\\n</span> then the graph contains induced subgraphs of each size from <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline3.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$\\\\{0,1,\\\\ldots, \\\\Omega \\\\big(n^2\\\\big)\\\\}$\\n</span></span>\\n</span>\\n</span>. We prove a bipartite analogue of the conjecture: if all balanced homogeneous sets in an <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline4.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$n \\\\times n$\\n</span></span>\\n</span>\\n</span> bipartite graph are of order <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline5.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$O(\\\\!\\\\log n)$\\n</span></span>\\n</span>\\n</span>, then the graph contains induced subgraphs of each size from <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline6.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$\\\\{0,1,\\\\ldots, \\\\Omega \\\\big(n^2\\\\big)\\\\}$\\n</span></span>\\n</span>\\n</span>.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548322000347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548322000347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Erdős和McKay的一个老猜想指出,如果一个$n$顶点图中的所有齐次集合都是$O(\!\log n)$阶的,那么这个图包含来自$\{0,1,\ldots, \Omega \big(n^2\big)\}$的各种大小的诱导子图。我们证明了这个猜想的一个二部类比:如果一个$n \times n$二部图中所有的平衡齐次集合都是$O(\!\log n)$阶的,那么这个图包含来自$\{0,1,\ldots, \Omega \big(n^2\big)\}$的每个大小的诱导子图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bipartite version of the Erdős–McKay conjecture

An old conjecture of Erdős and McKay states that if all homogeneous sets in an $n$ -vertex graph are of order $O(\!\log n)$ then the graph contains induced subgraphs of each size from $\{0,1,\ldots, \Omega \big(n^2\big)\}$ . We prove a bipartite analogue of the conjecture: if all balanced homogeneous sets in an $n \times n$ bipartite graph are of order $O(\!\log n)$ , then the graph contains induced subgraphs of each size from $\{0,1,\ldots, \Omega \big(n^2\big)\}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信