{"title":"Erdős-McKay猜想的二分版本","authors":"Eoin Long, Laurenţiu Ploscaru","doi":"10.1017/s0963548322000347","DOIUrl":null,"url":null,"abstract":"<p>An old conjecture of Erdős and McKay states that if all homogeneous sets in an <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline1.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$n$\n</span></span>\n</span>\n</span>-vertex graph are of order <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline2.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$O(\\!\\log n)$\n</span></span>\n</span>\n</span> then the graph contains induced subgraphs of each size from <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline3.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$\\{0,1,\\ldots, \\Omega \\big(n^2\\big)\\}$\n</span></span>\n</span>\n</span>. We prove a bipartite analogue of the conjecture: if all balanced homogeneous sets in an <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline4.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$n \\times n$\n</span></span>\n</span>\n</span> bipartite graph are of order <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline5.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$O(\\!\\log n)$\n</span></span>\n</span>\n</span>, then the graph contains induced subgraphs of each size from <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline6.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$\\{0,1,\\ldots, \\Omega \\big(n^2\\big)\\}$\n</span></span>\n</span>\n</span>.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bipartite version of the Erdős–McKay conjecture\",\"authors\":\"Eoin Long, Laurenţiu Ploscaru\",\"doi\":\"10.1017/s0963548322000347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An old conjecture of Erdős and McKay states that if all homogeneous sets in an <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline1.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$n$\\n</span></span>\\n</span>\\n</span>-vertex graph are of order <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline2.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$O(\\\\!\\\\log n)$\\n</span></span>\\n</span>\\n</span> then the graph contains induced subgraphs of each size from <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline3.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$\\\\{0,1,\\\\ldots, \\\\Omega \\\\big(n^2\\\\big)\\\\}$\\n</span></span>\\n</span>\\n</span>. We prove a bipartite analogue of the conjecture: if all balanced homogeneous sets in an <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline4.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$n \\\\times n$\\n</span></span>\\n</span>\\n</span> bipartite graph are of order <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline5.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$O(\\\\!\\\\log n)$\\n</span></span>\\n</span>\\n</span>, then the graph contains induced subgraphs of each size from <span>\\n<span>\\n<img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000347:S0963548322000347_inline6.png\\\"/>\\n<span data-mathjax-type=\\\"texmath\\\"><span>\\n$\\\\{0,1,\\\\ldots, \\\\Omega \\\\big(n^2\\\\big)\\\\}$\\n</span></span>\\n</span>\\n</span>.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548322000347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548322000347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An old conjecture of Erdős and McKay states that if all homogeneous sets in an
$n$
-vertex graph are of order
$O(\!\log n)$
then the graph contains induced subgraphs of each size from
$\{0,1,\ldots, \Omega \big(n^2\big)\}$
. We prove a bipartite analogue of the conjecture: if all balanced homogeneous sets in an
$n \times n$
bipartite graph are of order
$O(\!\log n)$
, then the graph contains induced subgraphs of each size from
$\{0,1,\ldots, \Omega \big(n^2\big)\}$
.