机器学习在法医DNA分析中的应用:综述

IF 3.2 2区 医学 Q2 GENETICS & HEREDITY
Mark Barash , Dennis McNevin , Vladimir Fedorenko , Pavel Giverts
{"title":"机器学习在法医DNA分析中的应用:综述","authors":"Mark Barash ,&nbsp;Dennis McNevin ,&nbsp;Vladimir Fedorenko ,&nbsp;Pavel Giverts","doi":"10.1016/j.fsigen.2023.102994","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning (ML) is a range of powerful computational algorithms capable of generating predictive models via intelligent autonomous analysis of relatively large and often unstructured data. ML has become an integral part of our daily lives with a plethora of applications, including web, business, automotive industry, clinical diagnostics, scientific research, and more recently, forensic science. In the field of forensic DNA, the manual analysis of complex data can be challenging, time-consuming, and error-prone. The integration of novel ML-based methods may aid in streamlining this process while maintaining the high accuracy and reproducibility required for forensic tools. Due to the relative novelty of such applications, the forensic community is largely unaware of ML capabilities and limitations. Furthermore, computer science and ML professionals are often unfamiliar with the forensic science field and its specific requirements. This manuscript offers a brief introduction to the capabilities of machine learning methods and their applications in the context of forensic DNA analysis and offers a critical review of the current literature in this rapidly developing field.</p></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872497323001692/pdfft?md5=2fe1beb79f1af33b24269b194601dd7f&pid=1-s2.0-S1872497323001692-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning applications in forensic DNA profiling: A critical review\",\"authors\":\"Mark Barash ,&nbsp;Dennis McNevin ,&nbsp;Vladimir Fedorenko ,&nbsp;Pavel Giverts\",\"doi\":\"10.1016/j.fsigen.2023.102994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning (ML) is a range of powerful computational algorithms capable of generating predictive models via intelligent autonomous analysis of relatively large and often unstructured data. ML has become an integral part of our daily lives with a plethora of applications, including web, business, automotive industry, clinical diagnostics, scientific research, and more recently, forensic science. In the field of forensic DNA, the manual analysis of complex data can be challenging, time-consuming, and error-prone. The integration of novel ML-based methods may aid in streamlining this process while maintaining the high accuracy and reproducibility required for forensic tools. Due to the relative novelty of such applications, the forensic community is largely unaware of ML capabilities and limitations. Furthermore, computer science and ML professionals are often unfamiliar with the forensic science field and its specific requirements. This manuscript offers a brief introduction to the capabilities of machine learning methods and their applications in the context of forensic DNA analysis and offers a critical review of the current literature in this rapidly developing field.</p></div>\",\"PeriodicalId\":50435,\"journal\":{\"name\":\"Forensic Science International-Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1872497323001692/pdfft?md5=2fe1beb79f1af33b24269b194601dd7f&pid=1-s2.0-S1872497323001692-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872497323001692\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497323001692","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)是一系列强大的计算算法,能够通过对相对较大且通常是非结构化数据的智能自主分析来生成预测模型。机器学习已经成为我们日常生活中不可或缺的一部分,有大量的应用,包括网络、商业、汽车工业、临床诊断、科学研究,以及最近的法医科学。在法医DNA领域,对复杂数据的人工分析可能具有挑战性、耗时且容易出错。新的基于ml的方法的集成可能有助于简化这一过程,同时保持法医工具所需的高精度和可重复性。由于这些应用程序相对新颖,法医社区在很大程度上不知道机器学习的功能和局限性。此外,计算机科学和机器学习专业人员往往不熟悉法医学领域及其具体要求。本文简要介绍了机器学习方法的功能及其在法医DNA分析中的应用,并对这一快速发展领域的当前文献进行了批判性回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning applications in forensic DNA profiling: A critical review

Machine learning (ML) is a range of powerful computational algorithms capable of generating predictive models via intelligent autonomous analysis of relatively large and often unstructured data. ML has become an integral part of our daily lives with a plethora of applications, including web, business, automotive industry, clinical diagnostics, scientific research, and more recently, forensic science. In the field of forensic DNA, the manual analysis of complex data can be challenging, time-consuming, and error-prone. The integration of novel ML-based methods may aid in streamlining this process while maintaining the high accuracy and reproducibility required for forensic tools. Due to the relative novelty of such applications, the forensic community is largely unaware of ML capabilities and limitations. Furthermore, computer science and ML professionals are often unfamiliar with the forensic science field and its specific requirements. This manuscript offers a brief introduction to the capabilities of machine learning methods and their applications in the context of forensic DNA analysis and offers a critical review of the current literature in this rapidly developing field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
32.30%
发文量
132
审稿时长
11.3 weeks
期刊介绍: Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts. The scope of the journal includes: Forensic applications of human polymorphism. Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies. Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms. Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications. Non-human DNA polymorphisms for crime scene investigation. Population genetics of human polymorphisms of forensic interest. Population data, especially from DNA polymorphisms of interest for the solution of forensic problems. DNA typing methodologies and strategies. Biostatistical methods in forensic genetics. Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches. Standards in forensic genetics. Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards. Quality control. Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies. Criminal DNA databases. Technical, legal and statistical issues. General ethical and legal issues related to forensic genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信