{"title":"波兰西南部Legnica-Głogów铜盆地及其邻近地区Zechstein地层地下水中硫化氢(H2S)的迁移","authors":"Robert Duda, Elżbieta Bilkiewicz, Roman Becker","doi":"10.7306/gq.1709","DOIUrl":null,"url":null,"abstract":"<p> </p><p> </p><p> </p><p>Hydrogen sulphide (H<sub>2</sub>S) occurs in groundwater in various lithostratigraphic units of the Zechstein Basin in the Legnica-Głogów Copper Basin (SW Poland). This region is located in the Fore-Sudetic Monocline within which, several tens of kilometres NE of the study area, at greater depths, natural gas fields with hydrogen sulphide (H<sub>2</sub>S) occur. The Main Dolomite (Ca2), in which H2S-containing natural gas has accumulated, is younger than the Zechstein Limestone (Ca1), which is actively mined. The Ca2 and Ca1 formations are separated by a thick anhydrite succession including a wedge-shaped salt body. Hydrochemical analyses of 18 groundwater samples taken from different horizons within the Zechstein strata showed spatial variability ofH<sub>2</sub>S and chloride concentrations. A conceptual model of groundwater flow with dissolved H2S in the Zechstein formations was developed. H<sub>2</sub>S migration is associated with groundwater flow between the Ca2 and Ca1 aquifers through fissures in the anhydrite strata that separate them. Hydraulic contact through fissures in the anhydrite layers is the result of long-term exploitation of the underground copper deposit. Groundwater flow between the layers is influenced by a large change in the piezometric pressure of the groundwater in the depression cone caused by mining drainage.</p>","PeriodicalId":12587,"journal":{"name":"Geological Quarterly","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen sulphide (H2S) migration in groundwater of the Zechstein strata in the Legnica-Głogów Copper Basin and its vicinity, SW Poland\",\"authors\":\"Robert Duda, Elżbieta Bilkiewicz, Roman Becker\",\"doi\":\"10.7306/gq.1709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> </p><p> </p><p> </p><p>Hydrogen sulphide (H<sub>2</sub>S) occurs in groundwater in various lithostratigraphic units of the Zechstein Basin in the Legnica-Głogów Copper Basin (SW Poland). This region is located in the Fore-Sudetic Monocline within which, several tens of kilometres NE of the study area, at greater depths, natural gas fields with hydrogen sulphide (H<sub>2</sub>S) occur. The Main Dolomite (Ca2), in which H2S-containing natural gas has accumulated, is younger than the Zechstein Limestone (Ca1), which is actively mined. The Ca2 and Ca1 formations are separated by a thick anhydrite succession including a wedge-shaped salt body. Hydrochemical analyses of 18 groundwater samples taken from different horizons within the Zechstein strata showed spatial variability ofH<sub>2</sub>S and chloride concentrations. A conceptual model of groundwater flow with dissolved H2S in the Zechstein formations was developed. H<sub>2</sub>S migration is associated with groundwater flow between the Ca2 and Ca1 aquifers through fissures in the anhydrite strata that separate them. Hydraulic contact through fissures in the anhydrite layers is the result of long-term exploitation of the underground copper deposit. Groundwater flow between the layers is influenced by a large change in the piezometric pressure of the groundwater in the depression cone caused by mining drainage.</p>\",\"PeriodicalId\":12587,\"journal\":{\"name\":\"Geological Quarterly\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Quarterly\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.7306/gq.1709\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Quarterly","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.7306/gq.1709","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
Hydrogen sulphide (H2S) migration in groundwater of the Zechstein strata in the Legnica-Głogów Copper Basin and its vicinity, SW Poland
Hydrogen sulphide (H2S) occurs in groundwater in various lithostratigraphic units of the Zechstein Basin in the Legnica-Głogów Copper Basin (SW Poland). This region is located in the Fore-Sudetic Monocline within which, several tens of kilometres NE of the study area, at greater depths, natural gas fields with hydrogen sulphide (H2S) occur. The Main Dolomite (Ca2), in which H2S-containing natural gas has accumulated, is younger than the Zechstein Limestone (Ca1), which is actively mined. The Ca2 and Ca1 formations are separated by a thick anhydrite succession including a wedge-shaped salt body. Hydrochemical analyses of 18 groundwater samples taken from different horizons within the Zechstein strata showed spatial variability ofH2S and chloride concentrations. A conceptual model of groundwater flow with dissolved H2S in the Zechstein formations was developed. H2S migration is associated with groundwater flow between the Ca2 and Ca1 aquifers through fissures in the anhydrite strata that separate them. Hydraulic contact through fissures in the anhydrite layers is the result of long-term exploitation of the underground copper deposit. Groundwater flow between the layers is influenced by a large change in the piezometric pressure of the groundwater in the depression cone caused by mining drainage.
期刊介绍:
The policy of the Geological Quarterly is to publish significant contributions of information and geological insight relevant to an international readership. The journal has been issued since 1957 at the Polish Geological Institute - National Research Institute and, at present, is the leading Earth sciences journal in Poland. All aspects of Earth and related sciences, and universal and broad regional rather than locally oriented topics are covered.
The journal is intended to be an international forum for the exchange of information and ideas, particularly on important geological topics of Central Europe.