提高n -芳基化生产力:流动中光电催化的放大潜力

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Jolien De Ketelaere, Thomas S. A. Heugebaert
{"title":"提高n -芳基化生产力:流动中光电催化的放大潜力","authors":"Jolien De Ketelaere,&nbsp;Thomas S. A. Heugebaert","doi":"10.1007/s41981-023-00290-0","DOIUrl":null,"url":null,"abstract":"<div><p>The recent advances in the area of electrophotocatalysis (EPC) show that it is a highly suitable technique to yield greener and more sustainable organic synthesis. The overall productivity of EPC however is constrained by a multitude of practical limitations, which impose difficulties in effectively harmonizing the photochemical and electrochemical steps, let alone in accelerating both steps simultaneously. In this contribution, we have tackled these limitations by developing a parallel plate flow cell that permits the execution of EPC in continuous flow. By using a transparent electrode, such as fluorine-doped tin oxide (FTO) or indium tin oxide (ITO) coated glass, the interelectrode distance could be reduced while improving photon absorption. By enhancing both the photochemical and electrochemical steps simultaneously, a notable increase in productivity and space–time-yield (a ten-fold and 300-fold improvement, respectively) of the <i>N</i>-arylation of different azoles was observed. In addition, this was achieved in a single-pass process under electrolyte-free conditions.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"119 - 128"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing N-arylation productivity: the amplified potential of electrophotocatalysis in flow\",\"authors\":\"Jolien De Ketelaere,&nbsp;Thomas S. A. Heugebaert\",\"doi\":\"10.1007/s41981-023-00290-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recent advances in the area of electrophotocatalysis (EPC) show that it is a highly suitable technique to yield greener and more sustainable organic synthesis. The overall productivity of EPC however is constrained by a multitude of practical limitations, which impose difficulties in effectively harmonizing the photochemical and electrochemical steps, let alone in accelerating both steps simultaneously. In this contribution, we have tackled these limitations by developing a parallel plate flow cell that permits the execution of EPC in continuous flow. By using a transparent electrode, such as fluorine-doped tin oxide (FTO) or indium tin oxide (ITO) coated glass, the interelectrode distance could be reduced while improving photon absorption. By enhancing both the photochemical and electrochemical steps simultaneously, a notable increase in productivity and space–time-yield (a ten-fold and 300-fold improvement, respectively) of the <i>N</i>-arylation of different azoles was observed. In addition, this was achieved in a single-pass process under electrolyte-free conditions.</p></div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"14 1\",\"pages\":\"119 - 128\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-023-00290-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-023-00290-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来在光电催化(EPC)领域的进展表明,它是一种非常适合的技术,以产生更绿色和更可持续的有机合成。然而,EPC的总体生产率受到许多实际限制的制约,这些限制在有效协调光化学和电化学步骤方面造成了困难,更不用说同时加速这两个步骤了。在这篇文章中,我们通过开发一种平行板流电池来解决这些限制,该电池允许在连续流动中执行EPC。通过使用透明电极,如掺氟氧化锡(FTO)或氧化铟锡(ITO)涂层玻璃,可以减少电极间距离,同时提高光子吸收。通过同时加强光化学和电化学步骤,观察到不同氮的n-芳基化的生产率和时空产率显著提高(分别提高10倍和300倍)。此外,这是在无电解质条件下的单道过程中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing N-arylation productivity: the amplified potential of electrophotocatalysis in flow

Enhancing N-arylation productivity: the amplified potential of electrophotocatalysis in flow

The recent advances in the area of electrophotocatalysis (EPC) show that it is a highly suitable technique to yield greener and more sustainable organic synthesis. The overall productivity of EPC however is constrained by a multitude of practical limitations, which impose difficulties in effectively harmonizing the photochemical and electrochemical steps, let alone in accelerating both steps simultaneously. In this contribution, we have tackled these limitations by developing a parallel plate flow cell that permits the execution of EPC in continuous flow. By using a transparent electrode, such as fluorine-doped tin oxide (FTO) or indium tin oxide (ITO) coated glass, the interelectrode distance could be reduced while improving photon absorption. By enhancing both the photochemical and electrochemical steps simultaneously, a notable increase in productivity and space–time-yield (a ten-fold and 300-fold improvement, respectively) of the N-arylation of different azoles was observed. In addition, this was achieved in a single-pass process under electrolyte-free conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flow Chemistry
Journal of Flow Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
3.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信