{"title":"金属-有机吸水性框架材料及其应用研究进展","authors":"Lu Cheng, Yu Dang, Yu Wang and Kai-Jie Chen","doi":"10.1039/D3QM00484H","DOIUrl":null,"url":null,"abstract":"<p >Potable water and energy shortage have become global issues. With the limited water adsorption performance and regeneration conditions of traditional water adsorbents, innovation in water adsorbents has significant practical implications. Due to the abundant varieties of adsorption sites and their adjustable pore structures, metal–organic frameworks (MOFs) are considered promising water adsorbents with tailorable regeneration conditions, controllable absorption humidity range, and superior water capacity. Herein, we combed through the development of water-uptake MOFs. Their water absorption mechanisms and strategies are summarized through analysis of typical examples. In addition, the recent advances of MOFs focused on atmospheric water harvesting, indoor humidity control, adsorption-driven heat pumps, and industrial chemical dehydration are reviewed. Finally, the possible challenges in the evolving prospects are predicted and the corresponding solutions are proposed.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 5","pages":" 1171-1194"},"PeriodicalIF":6.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in metal–organic frameworks for water absorption and their applications\",\"authors\":\"Lu Cheng, Yu Dang, Yu Wang and Kai-Jie Chen\",\"doi\":\"10.1039/D3QM00484H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Potable water and energy shortage have become global issues. With the limited water adsorption performance and regeneration conditions of traditional water adsorbents, innovation in water adsorbents has significant practical implications. Due to the abundant varieties of adsorption sites and their adjustable pore structures, metal–organic frameworks (MOFs) are considered promising water adsorbents with tailorable regeneration conditions, controllable absorption humidity range, and superior water capacity. Herein, we combed through the development of water-uptake MOFs. Their water absorption mechanisms and strategies are summarized through analysis of typical examples. In addition, the recent advances of MOFs focused on atmospheric water harvesting, indoor humidity control, adsorption-driven heat pumps, and industrial chemical dehydration are reviewed. Finally, the possible challenges in the evolving prospects are predicted and the corresponding solutions are proposed.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 5\",\"pages\":\" 1171-1194\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d3qm00484h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d3qm00484h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent advances in metal–organic frameworks for water absorption and their applications
Potable water and energy shortage have become global issues. With the limited water adsorption performance and regeneration conditions of traditional water adsorbents, innovation in water adsorbents has significant practical implications. Due to the abundant varieties of adsorption sites and their adjustable pore structures, metal–organic frameworks (MOFs) are considered promising water adsorbents with tailorable regeneration conditions, controllable absorption humidity range, and superior water capacity. Herein, we combed through the development of water-uptake MOFs. Their water absorption mechanisms and strategies are summarized through analysis of typical examples. In addition, the recent advances of MOFs focused on atmospheric water harvesting, indoor humidity control, adsorption-driven heat pumps, and industrial chemical dehydration are reviewed. Finally, the possible challenges in the evolving prospects are predicted and the corresponding solutions are proposed.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.