{"title":"多旋翼机被动滑橇着陆条件分析","authors":"Xu, Maozheng, Senoo, Taku, Takaki, Takeshi","doi":"10.1186/s40648-021-00212-6","DOIUrl":null,"url":null,"abstract":"This paper describes the condition analysis of a multicopter carried with a proposed device for rough terrain landing. Based on a multicopter carried with an electrical robot arm for grasping, we proposed a method to determine whether the skid-carried multicopter can land on an arbitrary slope or not. We established the static model of the entire device, and analyzed the conditions under which the arm and skid can contact the arbitrary plane and the COG (Center of Gravity), which includes the mass of passive skid, multicopter body and each link of the robot arm. Further, we proposed a method to analyze whether the entire device can land stably. By analyzing that the projection of the entire device’s COG is inside or outside the triangle, that comprises the contact point between the device and the uneven ground, we can determine whether the device can land successfully and the condition for capable landing is concluded. After the numerical analysis, the verification experiment is conducted, and by comparing the result of analysis with the experiment, the accuracy of the analysis can be demonstrated.","PeriodicalId":37462,"journal":{"name":"ROBOMECH Journal","volume":"99 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Condition analysis of a multicopter carried with passive skid for rough terrain landing\",\"authors\":\"Xu, Maozheng, Senoo, Taku, Takaki, Takeshi\",\"doi\":\"10.1186/s40648-021-00212-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the condition analysis of a multicopter carried with a proposed device for rough terrain landing. Based on a multicopter carried with an electrical robot arm for grasping, we proposed a method to determine whether the skid-carried multicopter can land on an arbitrary slope or not. We established the static model of the entire device, and analyzed the conditions under which the arm and skid can contact the arbitrary plane and the COG (Center of Gravity), which includes the mass of passive skid, multicopter body and each link of the robot arm. Further, we proposed a method to analyze whether the entire device can land stably. By analyzing that the projection of the entire device’s COG is inside or outside the triangle, that comprises the contact point between the device and the uneven ground, we can determine whether the device can land successfully and the condition for capable landing is concluded. After the numerical analysis, the verification experiment is conducted, and by comparing the result of analysis with the experiment, the accuracy of the analysis can be demonstrated.\",\"PeriodicalId\":37462,\"journal\":{\"name\":\"ROBOMECH Journal\",\"volume\":\"99 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ROBOMECH Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40648-021-00212-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROBOMECH Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40648-021-00212-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Condition analysis of a multicopter carried with passive skid for rough terrain landing
This paper describes the condition analysis of a multicopter carried with a proposed device for rough terrain landing. Based on a multicopter carried with an electrical robot arm for grasping, we proposed a method to determine whether the skid-carried multicopter can land on an arbitrary slope or not. We established the static model of the entire device, and analyzed the conditions under which the arm and skid can contact the arbitrary plane and the COG (Center of Gravity), which includes the mass of passive skid, multicopter body and each link of the robot arm. Further, we proposed a method to analyze whether the entire device can land stably. By analyzing that the projection of the entire device’s COG is inside or outside the triangle, that comprises the contact point between the device and the uneven ground, we can determine whether the device can land successfully and the condition for capable landing is concluded. After the numerical analysis, the verification experiment is conducted, and by comparing the result of analysis with the experiment, the accuracy of the analysis can be demonstrated.
期刊介绍:
ROBOMECH Journal focuses on advanced technologies and practical applications in the field of Robotics and Mechatronics. This field is driven by the steadily growing research, development and consumer demand for robots and systems. Advanced robots have been working in medical and hazardous environments, such as space and the deep sea as well as in the manufacturing environment. The scope of the journal includes but is not limited to: 1. Modeling and design 2. System integration 3. Actuators and sensors 4. Intelligent control 5. Artificial intelligence 6. Machine learning 7. Robotics 8. Manufacturing 9. Motion control 10. Vibration and noise control 11. Micro/nano devices and optoelectronics systems 12. Automotive systems 13. Applications for extreme and/or hazardous environments 14. Other applications