含有分数阶p(x,·)的Schrödinger-Kirchhoff-Type方程的无穷多解

IF 0.5 Q3 MATHEMATICS
Maryam Mirzapour
{"title":"含有分数阶p(x,·)的Schrödinger-Kirchhoff-Type方程的无穷多解","authors":"Maryam Mirzapour","doi":"10.3103/s1066369x23080054","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"37 1","pages":"67 - 77"},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely Many Solutions for Schrödinger–Kirchhoff-Type Equations Involving the Fractional p(x, ·)-Laplacian\",\"authors\":\"Maryam Mirzapour\",\"doi\":\"10.3103/s1066369x23080054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"37 1\",\"pages\":\"67 - 77\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x23080054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23080054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的目的是研究含有非局部的Schrödinger-Kirchhoff-type方程的无穷多解的存在性 \(p(x, \cdot )\)-分数拉普拉斯式 \(\left\{ {\begin{array}{*{20}{l}} {M({{\sigma }_{{p(x,y)}}}(u))\mathcal{L}_{K}^{{p(x, \cdot )}}(u) = \lambda {{{\left| u \right|}}^{{q(x) - 2}}}u + \mu {{{\left| u \right|}}^{{\gamma (x) - 2}}}u\;}&{{\text{in}}\;\Omega } \\ {u(x) = 0}&{{\text{in}}\;{{\mathbb{R}}^{N}}{\kern 1pt} \backslash {\kern 1pt} \Omega ,} \end{array}} \right.\)在哪里 \({{\sigma }_{{p(x,y)}}}(u) = \int_\mathcal{Q} \frac{{{{{\left| {u(x) - u(y)} \right|}}^{{p(x,y)}}}}}{{p(x,y)}}K(x,y)dxdy,\)\(\mathcal{L}_{K}^{{p(x, \cdot )}}\) 非局部算子是否具有奇异核 \(K\), \(\Omega \) 有界域在吗 \({{\mathbb{R}}^{N}}\) 具有利普希茨边界 \(\partial \Omega \), \(M:{{\mathbb{R}}^{ + }} \to \mathbb{R}\) 是一个连续函数q, \(\gamma \in C(\Omega )\) 和 \(\lambda ,\mu \) 是两个参数。在适当的假设条件下,利用喷泉定理和对偶喷泉定理证明了上述问题有无穷多个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely Many Solutions for Schrödinger–Kirchhoff-Type Equations Involving the Fractional p(x, ·)-Laplacian
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信