Laura E. Hubbard*, Carrie E. Givens, Erin A. Stelzer, Mary L. Killian, Dana W. Kolpin, Christine M. Szablewski and Rebecca L. Poulson,
{"title":"爱荷华湿地高致病性禽流感病毒环境监测与检测","authors":"Laura E. Hubbard*, Carrie E. Givens, Erin A. Stelzer, Mary L. Killian, Dana W. Kolpin, Christine M. Szablewski and Rebecca L. Poulson, ","doi":"10.1021/acs.estlett.3c00668","DOIUrl":null,"url":null,"abstract":"<p >Avian influenza viruses (AIVs) infect both wild birds and domestic poultry, resulting in economically costly outbreaks that have the potential to impact public health. Currently, a knowledge gap exists regarding the detection of infectious AIVs in the aquatic environment. In response to the 2021–2022 Eurasian strain highly pathogenic avian influenza (HPAI) A/goose/Guangdong/1/1996 clade 2.3.4.4 lineage H5 outbreak, an AIV environmental outbreak response study was conducted using a One Health approach. An optimized method was used to temporally sample (April and May 2022) and analyze (culture and molecular methods) surface water from five water bodies (four wetlands and one lake used as a comparison location) in areas near confirmed HPAI detections in wild bird or poultry operations. Avian influenza viruses were isolated from water samples collected in April from all four wetlands (not from the comparison lake sample); HPAI H5N1 was isolated from one wetland. No virus was isolated from the May samples. Several factors, including increased water temperatures, precipitation, biotic and abiotic factors, and absence of AIV-contaminated fecal material due to fewer waterfowl present, may have contributed to the lack of virus isolation from May samples. Results demonstrate surface water as a plausible medium for transmission of AIVs, including the HPAI virus.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"10 12","pages":"1181–1187"},"PeriodicalIF":8.8000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.3c00668","citationCount":"0","resultStr":"{\"title\":\"Environmental Surveillance and Detection of Infectious Highly Pathogenic Avian Influenza Virus in Iowa Wetlands\",\"authors\":\"Laura E. Hubbard*, Carrie E. Givens, Erin A. Stelzer, Mary L. Killian, Dana W. Kolpin, Christine M. Szablewski and Rebecca L. Poulson, \",\"doi\":\"10.1021/acs.estlett.3c00668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Avian influenza viruses (AIVs) infect both wild birds and domestic poultry, resulting in economically costly outbreaks that have the potential to impact public health. Currently, a knowledge gap exists regarding the detection of infectious AIVs in the aquatic environment. In response to the 2021–2022 Eurasian strain highly pathogenic avian influenza (HPAI) A/goose/Guangdong/1/1996 clade 2.3.4.4 lineage H5 outbreak, an AIV environmental outbreak response study was conducted using a One Health approach. An optimized method was used to temporally sample (April and May 2022) and analyze (culture and molecular methods) surface water from five water bodies (four wetlands and one lake used as a comparison location) in areas near confirmed HPAI detections in wild bird or poultry operations. Avian influenza viruses were isolated from water samples collected in April from all four wetlands (not from the comparison lake sample); HPAI H5N1 was isolated from one wetland. No virus was isolated from the May samples. Several factors, including increased water temperatures, precipitation, biotic and abiotic factors, and absence of AIV-contaminated fecal material due to fewer waterfowl present, may have contributed to the lack of virus isolation from May samples. Results demonstrate surface water as a plausible medium for transmission of AIVs, including the HPAI virus.</p>\",\"PeriodicalId\":37,\"journal\":{\"name\":\"Environmental Science & Technology Letters Environ.\",\"volume\":\"10 12\",\"pages\":\"1181–1187\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.3c00668\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science & Technology Letters Environ.\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.estlett.3c00668\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.3c00668","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Environmental Surveillance and Detection of Infectious Highly Pathogenic Avian Influenza Virus in Iowa Wetlands
Avian influenza viruses (AIVs) infect both wild birds and domestic poultry, resulting in economically costly outbreaks that have the potential to impact public health. Currently, a knowledge gap exists regarding the detection of infectious AIVs in the aquatic environment. In response to the 2021–2022 Eurasian strain highly pathogenic avian influenza (HPAI) A/goose/Guangdong/1/1996 clade 2.3.4.4 lineage H5 outbreak, an AIV environmental outbreak response study was conducted using a One Health approach. An optimized method was used to temporally sample (April and May 2022) and analyze (culture and molecular methods) surface water from five water bodies (four wetlands and one lake used as a comparison location) in areas near confirmed HPAI detections in wild bird or poultry operations. Avian influenza viruses were isolated from water samples collected in April from all four wetlands (not from the comparison lake sample); HPAI H5N1 was isolated from one wetland. No virus was isolated from the May samples. Several factors, including increased water temperatures, precipitation, biotic and abiotic factors, and absence of AIV-contaminated fecal material due to fewer waterfowl present, may have contributed to the lack of virus isolation from May samples. Results demonstrate surface water as a plausible medium for transmission of AIVs, including the HPAI virus.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.