{"title":"创造新型复合材料:柔性磁性和导电白云母","authors":"Yi-Cheng Chen, Yu-Cheng Cheng, Wei-En Ke, Bo-Sheng Chen, Chang-Yang Kuo, Tzu-Yi Yang, Yu-Lun Chueh, Ya-Jing Hu, Jiunn-Yuan Lin, Ying-Hao Chu","doi":"10.1016/j.mtadv.2023.100423","DOIUrl":null,"url":null,"abstract":"<p>The advancement of flexible technology, such as wearable devices, foldable mobile, and automobiles, has entered a new era. Recently, MICAtronics using flexible muscovite carriers has been introduced as a novel area for flexible technology. The muscovite substrate addresses challenges such as thermal budget and chemical stability, offering outstanding environmental stability and an alternative approach to the prevalent polymer-based soft technology. However, the role of muscovite in these studies has been limited to serving as substrates. We expand the scope of muscovite applications by proposing a new form called “intercalated muscovite.” In this study, we insert transition metal ions, creating a novel layout of muscovite substrates. Subsequent heat treatment and controlled atmospheres can generate various forms of inserted species. These intercalated systems reveal new physical properties of muscovite substrates, offering a fresh avenue for MICAtronics.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"38 2","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creation of novel composite: Flexible magnetic and conductive muscovite\",\"authors\":\"Yi-Cheng Chen, Yu-Cheng Cheng, Wei-En Ke, Bo-Sheng Chen, Chang-Yang Kuo, Tzu-Yi Yang, Yu-Lun Chueh, Ya-Jing Hu, Jiunn-Yuan Lin, Ying-Hao Chu\",\"doi\":\"10.1016/j.mtadv.2023.100423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The advancement of flexible technology, such as wearable devices, foldable mobile, and automobiles, has entered a new era. Recently, MICAtronics using flexible muscovite carriers has been introduced as a novel area for flexible technology. The muscovite substrate addresses challenges such as thermal budget and chemical stability, offering outstanding environmental stability and an alternative approach to the prevalent polymer-based soft technology. However, the role of muscovite in these studies has been limited to serving as substrates. We expand the scope of muscovite applications by proposing a new form called “intercalated muscovite.” In this study, we insert transition metal ions, creating a novel layout of muscovite substrates. Subsequent heat treatment and controlled atmospheres can generate various forms of inserted species. These intercalated systems reveal new physical properties of muscovite substrates, offering a fresh avenue for MICAtronics.</p>\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"38 2\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2023.100423\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100423","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Creation of novel composite: Flexible magnetic and conductive muscovite
The advancement of flexible technology, such as wearable devices, foldable mobile, and automobiles, has entered a new era. Recently, MICAtronics using flexible muscovite carriers has been introduced as a novel area for flexible technology. The muscovite substrate addresses challenges such as thermal budget and chemical stability, offering outstanding environmental stability and an alternative approach to the prevalent polymer-based soft technology. However, the role of muscovite in these studies has been limited to serving as substrates. We expand the scope of muscovite applications by proposing a new form called “intercalated muscovite.” In this study, we insert transition metal ions, creating a novel layout of muscovite substrates. Subsequent heat treatment and controlled atmospheres can generate various forms of inserted species. These intercalated systems reveal new physical properties of muscovite substrates, offering a fresh avenue for MICAtronics.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.