{"title":"非理想磁流体力学中的广义交叉螺旋度","authors":"Prachi Sharma, Asher Yahalom","doi":"10.1017/s002237782300123x","DOIUrl":null,"url":null,"abstract":"The objective of the present paper is to investigate the constancy of the topological invariant, denoted the non-barotropic generalized cross-helicity in the case of non-ideal magnetohydrodynamics (MHD). Existing work considers only ideal barotropic MHD and ideal non-barotropic MHD. Here, we consider dissipative processes in the form of thermal conduction, finite electrical conductivity and viscosity and the effect of these processes on the cross-helicity conservation. An analytical approach has been adopted to obtain the mathematical expressions for the time derivative of the cross-helicity. Obtained results show that the generalized cross-helicity is not conserved in the non-ideal MHD limit and indicate which processes affect the helicity and which do not. Furthermore, we indicate the configurations in which this topological constant is conserved despite the dissipative processes. Some examples and applications are also given.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"21 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized cross-helicity in non-ideal magnetohydrodynamics\",\"authors\":\"Prachi Sharma, Asher Yahalom\",\"doi\":\"10.1017/s002237782300123x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of the present paper is to investigate the constancy of the topological invariant, denoted the non-barotropic generalized cross-helicity in the case of non-ideal magnetohydrodynamics (MHD). Existing work considers only ideal barotropic MHD and ideal non-barotropic MHD. Here, we consider dissipative processes in the form of thermal conduction, finite electrical conductivity and viscosity and the effect of these processes on the cross-helicity conservation. An analytical approach has been adopted to obtain the mathematical expressions for the time derivative of the cross-helicity. Obtained results show that the generalized cross-helicity is not conserved in the non-ideal MHD limit and indicate which processes affect the helicity and which do not. Furthermore, we indicate the configurations in which this topological constant is conserved despite the dissipative processes. Some examples and applications are also given.\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s002237782300123x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s002237782300123x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Generalized cross-helicity in non-ideal magnetohydrodynamics
The objective of the present paper is to investigate the constancy of the topological invariant, denoted the non-barotropic generalized cross-helicity in the case of non-ideal magnetohydrodynamics (MHD). Existing work considers only ideal barotropic MHD and ideal non-barotropic MHD. Here, we consider dissipative processes in the form of thermal conduction, finite electrical conductivity and viscosity and the effect of these processes on the cross-helicity conservation. An analytical approach has been adopted to obtain the mathematical expressions for the time derivative of the cross-helicity. Obtained results show that the generalized cross-helicity is not conserved in the non-ideal MHD limit and indicate which processes affect the helicity and which do not. Furthermore, we indicate the configurations in which this topological constant is conserved despite the dissipative processes. Some examples and applications are also given.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.