Zakharov-Kuznetsov方程线孤立波周围的中心稳定流形

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yohei Yamazaki
{"title":"Zakharov-Kuznetsov方程线孤立波周围的中心稳定流形","authors":"Yohei Yamazaki","doi":"10.1007/s10884-023-10329-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we construct center stable manifolds of unstable line solitary waves for the Zakharov–Kuznetsov equation on <span>\\({\\mathbb {R}} \\times {\\mathbb {T}}_L\\)</span> and show the orbital stability of the unstable line solitary waves on the center stable manifolds, which yields the asymptotic stability of unstable solitary waves on the center stable manifolds near by stable line solitary waves. The construction is based on the graph transform approach by Nakanishi and Schlag (SIAM J Math Anal 44:1175–1210, 2012). Applying the bilinear estimate on Fourier restriction spaces by Molinet and Pilod (Ann Inst H Poincaré Anal Non Lineaire 32:347–371, 2015) and modifying the mobile distance in Nakanishi and Schlag (2012), we construct a contraction map on the graph space.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Center Stable Manifolds Around Line Solitary Waves of the Zakharov–Kuznetsov Equation\",\"authors\":\"Yohei Yamazaki\",\"doi\":\"10.1007/s10884-023-10329-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we construct center stable manifolds of unstable line solitary waves for the Zakharov–Kuznetsov equation on <span>\\\\({\\\\mathbb {R}} \\\\times {\\\\mathbb {T}}_L\\\\)</span> and show the orbital stability of the unstable line solitary waves on the center stable manifolds, which yields the asymptotic stability of unstable solitary waves on the center stable manifolds near by stable line solitary waves. The construction is based on the graph transform approach by Nakanishi and Schlag (SIAM J Math Anal 44:1175–1210, 2012). Applying the bilinear estimate on Fourier restriction spaces by Molinet and Pilod (Ann Inst H Poincaré Anal Non Lineaire 32:347–371, 2015) and modifying the mobile distance in Nakanishi and Schlag (2012), we construct a contraction map on the graph space.\\n</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-023-10329-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-023-10329-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文对\({\mathbb {R}} \times {\mathbb {T}}_L\)上的Zakharov-Kuznetsov方程构造了不稳定线孤立波的中心稳定流形,并给出了不稳定线孤立波在中心稳定流形上的轨道稳定性,得到了不稳定线孤立波在中心稳定流形附近的渐近稳定性。该构造基于Nakanishi和Schlag (SIAM J Math Anal 44:11 175 - 1210, 2012)的图变换方法。应用Molinet和Pilod (Ann Inst H poincar Anal nonlineaire 32:34 47 - 371, 2015)对傅里叶限制空间的双线性估计,并修改Nakanishi和Schlag(2012)的移动距离,我们在图空间上构造了一个收缩映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Center Stable Manifolds Around Line Solitary Waves of the Zakharov–Kuznetsov Equation

In this paper, we construct center stable manifolds of unstable line solitary waves for the Zakharov–Kuznetsov equation on \({\mathbb {R}} \times {\mathbb {T}}_L\) and show the orbital stability of the unstable line solitary waves on the center stable manifolds, which yields the asymptotic stability of unstable solitary waves on the center stable manifolds near by stable line solitary waves. The construction is based on the graph transform approach by Nakanishi and Schlag (SIAM J Math Anal 44:1175–1210, 2012). Applying the bilinear estimate on Fourier restriction spaces by Molinet and Pilod (Ann Inst H Poincaré Anal Non Lineaire 32:347–371, 2015) and modifying the mobile distance in Nakanishi and Schlag (2012), we construct a contraction map on the graph space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信