Afshin Zeinedini, Yazdan Hosseini, Ahmed Sahib Mahdi, Alireza Akhavan-Safar, Lucas F. M. da Silva
{"title":"制造工艺对层合复合材料-金属铆接接头弯曲性能的影响:实验与数值研究","authors":"Afshin Zeinedini, Yazdan Hosseini, Ahmed Sahib Mahdi, Alireza Akhavan-Safar, Lucas F. M. da Silva","doi":"10.1007/s10443-023-10186-w","DOIUrl":null,"url":null,"abstract":"<div><p>The main aim of this paper was to make rivet joints of metal-composites without drilling the laminated composites. Experimental and numerical approaches were used to show the efficiency of this manufacturing method and its effects on the energy absorption of the metal-composites joint under bending loading. In this research, E-glass/epoxy laminated composites were joined to Al 6061-T6 and ASTM A283 St Grade C. Various number of rivets, i.e., 1, 2 and 4, and two arrangements, i.e., square and diamond, were embedded in the laminated composites. Then, the single lap joints were tested under flexural loading. A 3D finite element (FE) analysis at the meso-scale was performed to compare the response of woven E-glass/epoxy composites with and without drilling. Since the meso-scale model could not be applied to simulate the considered single lap joint, a refined micro-blocks model was also proposed for the regions affected by the riveting process. The experimental results showed that the embedding method significantly improves the energy absorption of the joints. This improvement was around 15% and 28–62% for the Al/composites and St/composites samples, respectively. Besides, the samples with the diamond arrangement have the best flexural properties. The FE analysis demonstrated that the results obtained by the refined micro-blocks model compare well with the experimental data.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 2","pages":"583 - 610"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the Manufacturing Process on the Flexural Properties of Laminated Composite-Metal Riveted Joints: Experimental and Numerical Studies\",\"authors\":\"Afshin Zeinedini, Yazdan Hosseini, Ahmed Sahib Mahdi, Alireza Akhavan-Safar, Lucas F. M. da Silva\",\"doi\":\"10.1007/s10443-023-10186-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main aim of this paper was to make rivet joints of metal-composites without drilling the laminated composites. Experimental and numerical approaches were used to show the efficiency of this manufacturing method and its effects on the energy absorption of the metal-composites joint under bending loading. In this research, E-glass/epoxy laminated composites were joined to Al 6061-T6 and ASTM A283 St Grade C. Various number of rivets, i.e., 1, 2 and 4, and two arrangements, i.e., square and diamond, were embedded in the laminated composites. Then, the single lap joints were tested under flexural loading. A 3D finite element (FE) analysis at the meso-scale was performed to compare the response of woven E-glass/epoxy composites with and without drilling. Since the meso-scale model could not be applied to simulate the considered single lap joint, a refined micro-blocks model was also proposed for the regions affected by the riveting process. The experimental results showed that the embedding method significantly improves the energy absorption of the joints. This improvement was around 15% and 28–62% for the Al/composites and St/composites samples, respectively. Besides, the samples with the diamond arrangement have the best flexural properties. The FE analysis demonstrated that the results obtained by the refined micro-blocks model compare well with the experimental data.</p></div>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"31 2\",\"pages\":\"583 - 610\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10443-023-10186-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-023-10186-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Impact of the Manufacturing Process on the Flexural Properties of Laminated Composite-Metal Riveted Joints: Experimental and Numerical Studies
The main aim of this paper was to make rivet joints of metal-composites without drilling the laminated composites. Experimental and numerical approaches were used to show the efficiency of this manufacturing method and its effects on the energy absorption of the metal-composites joint under bending loading. In this research, E-glass/epoxy laminated composites were joined to Al 6061-T6 and ASTM A283 St Grade C. Various number of rivets, i.e., 1, 2 and 4, and two arrangements, i.e., square and diamond, were embedded in the laminated composites. Then, the single lap joints were tested under flexural loading. A 3D finite element (FE) analysis at the meso-scale was performed to compare the response of woven E-glass/epoxy composites with and without drilling. Since the meso-scale model could not be applied to simulate the considered single lap joint, a refined micro-blocks model was also proposed for the regions affected by the riveting process. The experimental results showed that the embedding method significantly improves the energy absorption of the joints. This improvement was around 15% and 28–62% for the Al/composites and St/composites samples, respectively. Besides, the samples with the diamond arrangement have the best flexural properties. The FE analysis demonstrated that the results obtained by the refined micro-blocks model compare well with the experimental data.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.