Hiasmim Rohem Gualberto, João Marciano Laredo dos Reis, Mônica Calixto de Andrade, Hector Reynaldo Meneses Costa, Felipe do Carmo Amorim, Julian David Hunt
{"title":"紫外线辐照时间对玻璃/环氧复合材料力学性能的影响","authors":"Hiasmim Rohem Gualberto, João Marciano Laredo dos Reis, Mônica Calixto de Andrade, Hector Reynaldo Meneses Costa, Felipe do Carmo Amorim, Julian David Hunt","doi":"10.1007/s10443-023-10182-0","DOIUrl":null,"url":null,"abstract":"<div><p>Glass Fiber Reinforced Polymer (GFRP) is commonly used in outdoor applications that expose it to environmental conditions capable of degrading its properties, notably ultraviolet (UV) radiation. In this study, we subjected GFRP to UV radiation for a duration of up to 180 days in an accelerated aging chamber. The composites underwent mechanical testing through tensile and flexural evaluations, while chemical and physical changes in the composite were assessed using Fourier-Transform Infrared Spectroscopy, Thermogravimetric analysis, and optical microscopy. Tensile tests revealed a noticeable reduction in GFRP strength after just one month of UV exposure, with a decrease of 18.7% observed at 90 days of exposure. In contrast, the behavior of the composite under flexural testing showed an initial improvement in strength after 30 days of UV exposure, with a significant increase of 54.1%. With longer exposure times, flexural strength gradually decreased but remained 18.9% higher than the strength of the unaged composite after 180 days of UV exposure. Other characterizations indicated material degradation, marked by phenomena such as photo-oxidation, composite yellowing, and the appearance of microcracks on the surface. These factors collectively contribute to the reduction in composite strength. Despite the visible degradation, the aged composite may exhibit improvements attributed to post-curing. However, over more extended periods, it may experience a decline in mechanical properties. Consequently, longer degradation times may unveil a behavior pattern distinct from what is observed during shorter periods, contingent upon the specific mechanical load under consideration.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 2","pages":"447 - 465"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Exposure Time to UV Radiation on Mechanical Properties of Glass/Epoxy Composites\",\"authors\":\"Hiasmim Rohem Gualberto, João Marciano Laredo dos Reis, Mônica Calixto de Andrade, Hector Reynaldo Meneses Costa, Felipe do Carmo Amorim, Julian David Hunt\",\"doi\":\"10.1007/s10443-023-10182-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glass Fiber Reinforced Polymer (GFRP) is commonly used in outdoor applications that expose it to environmental conditions capable of degrading its properties, notably ultraviolet (UV) radiation. In this study, we subjected GFRP to UV radiation for a duration of up to 180 days in an accelerated aging chamber. The composites underwent mechanical testing through tensile and flexural evaluations, while chemical and physical changes in the composite were assessed using Fourier-Transform Infrared Spectroscopy, Thermogravimetric analysis, and optical microscopy. Tensile tests revealed a noticeable reduction in GFRP strength after just one month of UV exposure, with a decrease of 18.7% observed at 90 days of exposure. In contrast, the behavior of the composite under flexural testing showed an initial improvement in strength after 30 days of UV exposure, with a significant increase of 54.1%. With longer exposure times, flexural strength gradually decreased but remained 18.9% higher than the strength of the unaged composite after 180 days of UV exposure. Other characterizations indicated material degradation, marked by phenomena such as photo-oxidation, composite yellowing, and the appearance of microcracks on the surface. These factors collectively contribute to the reduction in composite strength. Despite the visible degradation, the aged composite may exhibit improvements attributed to post-curing. However, over more extended periods, it may experience a decline in mechanical properties. Consequently, longer degradation times may unveil a behavior pattern distinct from what is observed during shorter periods, contingent upon the specific mechanical load under consideration.</p></div>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"31 2\",\"pages\":\"447 - 465\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10443-023-10182-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-023-10182-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Effect of Exposure Time to UV Radiation on Mechanical Properties of Glass/Epoxy Composites
Glass Fiber Reinforced Polymer (GFRP) is commonly used in outdoor applications that expose it to environmental conditions capable of degrading its properties, notably ultraviolet (UV) radiation. In this study, we subjected GFRP to UV radiation for a duration of up to 180 days in an accelerated aging chamber. The composites underwent mechanical testing through tensile and flexural evaluations, while chemical and physical changes in the composite were assessed using Fourier-Transform Infrared Spectroscopy, Thermogravimetric analysis, and optical microscopy. Tensile tests revealed a noticeable reduction in GFRP strength after just one month of UV exposure, with a decrease of 18.7% observed at 90 days of exposure. In contrast, the behavior of the composite under flexural testing showed an initial improvement in strength after 30 days of UV exposure, with a significant increase of 54.1%. With longer exposure times, flexural strength gradually decreased but remained 18.9% higher than the strength of the unaged composite after 180 days of UV exposure. Other characterizations indicated material degradation, marked by phenomena such as photo-oxidation, composite yellowing, and the appearance of microcracks on the surface. These factors collectively contribute to the reduction in composite strength. Despite the visible degradation, the aged composite may exhibit improvements attributed to post-curing. However, over more extended periods, it may experience a decline in mechanical properties. Consequently, longer degradation times may unveil a behavior pattern distinct from what is observed during shorter periods, contingent upon the specific mechanical load under consideration.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.