特征排序因子模型中的深度学习

IF 3.9 2区 经济学 Q1 Economics, Econometrics and Finance
Guanhao Feng, Jingyu He, Nicholas G. Polson, Jianeng Xu
{"title":"特征排序因子模型中的深度学习","authors":"Guanhao Feng, Jingyu He, Nicholas G. Polson, Jianeng Xu","doi":"10.1017/s0022109023000893","DOIUrl":null,"url":null,"abstract":"<p>This article presents an augmented deep factor model that generates latent factors for cross-sectional asset pricing. The conventional security sorting on firm characteristics for constructing long–short factor portfolio weights is nonlinear modeling, while factors are treated as inputs in linear models. We provide a structural deep-learning framework to generalize the complete mechanism for fitting cross-sectional returns by firm characteristics through generating risk factors (hidden layers). Our model has an economic-guided objective function that minimizes aggregated realized pricing errors. Empirical results on high-dimensional characteristics demonstrate robust asset pricing performance and strong investment improvements by identifying important raw characteristic sources.</p>","PeriodicalId":48380,"journal":{"name":"Journal of Financial and Quantitative Analysis","volume":"112 2-3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning in Characteristics-Sorted Factor Models\",\"authors\":\"Guanhao Feng, Jingyu He, Nicholas G. Polson, Jianeng Xu\",\"doi\":\"10.1017/s0022109023000893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents an augmented deep factor model that generates latent factors for cross-sectional asset pricing. The conventional security sorting on firm characteristics for constructing long–short factor portfolio weights is nonlinear modeling, while factors are treated as inputs in linear models. We provide a structural deep-learning framework to generalize the complete mechanism for fitting cross-sectional returns by firm characteristics through generating risk factors (hidden layers). Our model has an economic-guided objective function that minimizes aggregated realized pricing errors. Empirical results on high-dimensional characteristics demonstrate robust asset pricing performance and strong investment improvements by identifying important raw characteristic sources.</p>\",\"PeriodicalId\":48380,\"journal\":{\"name\":\"Journal of Financial and Quantitative Analysis\",\"volume\":\"112 2-3\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial and Quantitative Analysis\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/s0022109023000893\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial and Quantitative Analysis","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s0022109023000893","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种增强深度因子模型,该模型产生了横截面资产定价的潜在因子。传统的基于企业特征的证券排序构建多空因子组合权重是非线性模型,而因子在线性模型中被视为输入。我们提供了一个结构化的深度学习框架,通过生成风险因素(隐藏层)来概括公司特征拟合横截面收益的完整机制。我们的模型有一个以经济为导向的目标函数,它使累计已实现的定价误差最小化。高维特征的实证结果表明,通过识别重要的原始特征来源,资产定价表现强劲,投资改善强劲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning in Characteristics-Sorted Factor Models

This article presents an augmented deep factor model that generates latent factors for cross-sectional asset pricing. The conventional security sorting on firm characteristics for constructing long–short factor portfolio weights is nonlinear modeling, while factors are treated as inputs in linear models. We provide a structural deep-learning framework to generalize the complete mechanism for fitting cross-sectional returns by firm characteristics through generating risk factors (hidden layers). Our model has an economic-guided objective function that minimizes aggregated realized pricing errors. Empirical results on high-dimensional characteristics demonstrate robust asset pricing performance and strong investment improvements by identifying important raw characteristic sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
5.10%
发文量
131
期刊介绍: The Journal of Financial and Quantitative Analysis (JFQA) publishes theoretical and empirical research in financial economics. Topics include corporate finance, investments, capital and security markets, and quantitative methods of particular relevance to financial researchers. With a circulation of 3000 libraries, firms, and individuals in 70 nations, the JFQA serves an international community of sophisticated finance scholars—academics and practitioners alike. The JFQA prints less than 10% of the more than 600 unsolicited manuscripts submitted annually. An intensive blind review process and exacting editorial standards contribute to the JFQA’s reputation as a top finance journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信