{"title":"MGSE调控高尔基应激反应中从粘蛋白途径到TFE3途径的串扰。","authors":"Mohamad Ikhwan Jamaludin,Sadao Wakabayashi,Mai Taniguchi,Kanae Sasaki,Ryota Komori,Hirotada Kawamura,Hayataka Takase,Miyu Sakamoto,Hiderou Yoshida","doi":"10.1247/csf.19009","DOIUrl":null,"url":null,"abstract":"The Golgi apparatus is an organelle where membrane or secretory proteins receive post-translational modifications such as glycosylation and sulfation, after which the proteins are selectively transported to their final destinations through vesicular transport. When the synthesis of secretory or membrane proteins is increased and overwhelms the capacity of the Golgi (Golgi stress), eukaryotic cells activate a homeostatic mechanism called the Golgi stress response to augment the capacity of the Golgi. Four response pathways of the Golgi stress response have been identified, namely the TFE3, CREB3, HSP47, and proteoglycan pathways, which regulate the general function of the Golgi, apoptosis, cell survival, and proteoglycan glycosylation, respectively. Here, we identified a novel response pathway that augments the expression of glycosylation enzymes for mucins in response to insufficiency in mucin-type glycosylation in the Golgi (mucin-type Golgi stress), and we found that expression of glycosylation enzymes for mucins such as GALNT5, GALNT8, and GALNT18 was increased upon mucin-type-Golgi stress. We named this pathway the mucin pathway. Unexpectedly, mucin-type Golgi stress induced the expression and activation of TFE3, a key transcription factor regulating the TFE3 pathway, suggesting that the activated mucin pathway sends a crosstalk signal to the TFE3 pathway. We identified an enhancer element regulating transcriptional induction of TFE3 upon mucin-type Golgi stress, and named it the mucin-type Golgi stress response element, of which consensus was ACTTCC(N9)TCCCCA. These results suggested that crosstalk from the mucin pathway to the TFE3 pathway has an important role in the regulation of the mammalian Golgi stress response.Key words: Golgi stress, mucin, TFE3, organelle autoregulation, organelle zone.","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"48 3","pages":"137-151"},"PeriodicalIF":2.0000,"publicationDate":"2019-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MGSE Regulates Crosstalk from the Mucin Pathway to the TFE3 Pathway of the Golgi Stress Response.\",\"authors\":\"Mohamad Ikhwan Jamaludin,Sadao Wakabayashi,Mai Taniguchi,Kanae Sasaki,Ryota Komori,Hirotada Kawamura,Hayataka Takase,Miyu Sakamoto,Hiderou Yoshida\",\"doi\":\"10.1247/csf.19009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Golgi apparatus is an organelle where membrane or secretory proteins receive post-translational modifications such as glycosylation and sulfation, after which the proteins are selectively transported to their final destinations through vesicular transport. When the synthesis of secretory or membrane proteins is increased and overwhelms the capacity of the Golgi (Golgi stress), eukaryotic cells activate a homeostatic mechanism called the Golgi stress response to augment the capacity of the Golgi. Four response pathways of the Golgi stress response have been identified, namely the TFE3, CREB3, HSP47, and proteoglycan pathways, which regulate the general function of the Golgi, apoptosis, cell survival, and proteoglycan glycosylation, respectively. Here, we identified a novel response pathway that augments the expression of glycosylation enzymes for mucins in response to insufficiency in mucin-type glycosylation in the Golgi (mucin-type Golgi stress), and we found that expression of glycosylation enzymes for mucins such as GALNT5, GALNT8, and GALNT18 was increased upon mucin-type-Golgi stress. We named this pathway the mucin pathway. Unexpectedly, mucin-type Golgi stress induced the expression and activation of TFE3, a key transcription factor regulating the TFE3 pathway, suggesting that the activated mucin pathway sends a crosstalk signal to the TFE3 pathway. We identified an enhancer element regulating transcriptional induction of TFE3 upon mucin-type Golgi stress, and named it the mucin-type Golgi stress response element, of which consensus was ACTTCC(N9)TCCCCA. These results suggested that crosstalk from the mucin pathway to the TFE3 pathway has an important role in the regulation of the mammalian Golgi stress response.Key words: Golgi stress, mucin, TFE3, organelle autoregulation, organelle zone.\",\"PeriodicalId\":9927,\"journal\":{\"name\":\"Cell structure and function\",\"volume\":\"48 3\",\"pages\":\"137-151\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell structure and function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1247/csf.19009\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.19009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
MGSE Regulates Crosstalk from the Mucin Pathway to the TFE3 Pathway of the Golgi Stress Response.
The Golgi apparatus is an organelle where membrane or secretory proteins receive post-translational modifications such as glycosylation and sulfation, after which the proteins are selectively transported to their final destinations through vesicular transport. When the synthesis of secretory or membrane proteins is increased and overwhelms the capacity of the Golgi (Golgi stress), eukaryotic cells activate a homeostatic mechanism called the Golgi stress response to augment the capacity of the Golgi. Four response pathways of the Golgi stress response have been identified, namely the TFE3, CREB3, HSP47, and proteoglycan pathways, which regulate the general function of the Golgi, apoptosis, cell survival, and proteoglycan glycosylation, respectively. Here, we identified a novel response pathway that augments the expression of glycosylation enzymes for mucins in response to insufficiency in mucin-type glycosylation in the Golgi (mucin-type Golgi stress), and we found that expression of glycosylation enzymes for mucins such as GALNT5, GALNT8, and GALNT18 was increased upon mucin-type-Golgi stress. We named this pathway the mucin pathway. Unexpectedly, mucin-type Golgi stress induced the expression and activation of TFE3, a key transcription factor regulating the TFE3 pathway, suggesting that the activated mucin pathway sends a crosstalk signal to the TFE3 pathway. We identified an enhancer element regulating transcriptional induction of TFE3 upon mucin-type Golgi stress, and named it the mucin-type Golgi stress response element, of which consensus was ACTTCC(N9)TCCCCA. These results suggested that crosstalk from the mucin pathway to the TFE3 pathway has an important role in the regulation of the mammalian Golgi stress response.Key words: Golgi stress, mucin, TFE3, organelle autoregulation, organelle zone.
期刊介绍:
Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print.
Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.