BCR-ABL对应激颗粒的定位有助于其致癌功能。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sayaka Kashiwagi,Yoichiro Fujioka,Takeshi Kondo,Aya O Satoh,Aiko Yoshida,Mari Fujioka,Hitoshi Sasajima,Maho Amano,Takanori Teshima,Yusuke Ohba
{"title":"BCR-ABL对应激颗粒的定位有助于其致癌功能。","authors":"Sayaka Kashiwagi,Yoichiro Fujioka,Takeshi Kondo,Aya O Satoh,Aiko Yoshida,Mari Fujioka,Hitoshi Sasajima,Maho Amano,Takanori Teshima,Yusuke Ohba","doi":"10.1247/csf.19033","DOIUrl":null,"url":null,"abstract":"The oncogenic tyrosine kinase BCR-ABL activates a variety of signaling pathways and plays a causative role in the pathogenesis of chronic myelogenous leukemia (CML); however, the subcellular distribution of this chimeric protein remains controversial. Here, we report that BCR-ABL is localized to stress granules and that its granular localization contributes to BCR-ABL-dependent leukemogenesis. BCR-ABL-positive granules were not colocalized with any markers for membrane-bound organelles but were colocalized with HSP90a, a component of RNA granules. The number of such granules increased with thapsigargin treatment, confirming that the granules were stress granules. Given that treatment with the ABL kinase inhibitor imatinib and elimination of the N-terminal region of BCR-ABL abolished granule formation, kinase activity and the coiled-coil domain are required for granule formation. Whereas wild-type BCR-ABL rescued the growth defect in IL-3-depleted Ba/F3 cells, mutant BCR-ABL lacking the N-terminal region failed to do so. Moreover, forced tetramerization of the N-terminus-deleted mutant could not restore the growth defect, indicating that granule formation, but not tetramerization, through its N-terminus is critical for BCR-ABL-dependent oncogenicity. Our findings together provide new insights into the pathogenesis of CML by BCR-ABL and open a window for developing novel therapeutic strategies for this disease.Key words: BCR-ABL, subcellular localization, stress granule.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization of BCR-ABL to Stress Granules Contributes to Its Oncogenic Function.\",\"authors\":\"Sayaka Kashiwagi,Yoichiro Fujioka,Takeshi Kondo,Aya O Satoh,Aiko Yoshida,Mari Fujioka,Hitoshi Sasajima,Maho Amano,Takanori Teshima,Yusuke Ohba\",\"doi\":\"10.1247/csf.19033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oncogenic tyrosine kinase BCR-ABL activates a variety of signaling pathways and plays a causative role in the pathogenesis of chronic myelogenous leukemia (CML); however, the subcellular distribution of this chimeric protein remains controversial. Here, we report that BCR-ABL is localized to stress granules and that its granular localization contributes to BCR-ABL-dependent leukemogenesis. BCR-ABL-positive granules were not colocalized with any markers for membrane-bound organelles but were colocalized with HSP90a, a component of RNA granules. The number of such granules increased with thapsigargin treatment, confirming that the granules were stress granules. Given that treatment with the ABL kinase inhibitor imatinib and elimination of the N-terminal region of BCR-ABL abolished granule formation, kinase activity and the coiled-coil domain are required for granule formation. Whereas wild-type BCR-ABL rescued the growth defect in IL-3-depleted Ba/F3 cells, mutant BCR-ABL lacking the N-terminal region failed to do so. Moreover, forced tetramerization of the N-terminus-deleted mutant could not restore the growth defect, indicating that granule formation, but not tetramerization, through its N-terminus is critical for BCR-ABL-dependent oncogenicity. Our findings together provide new insights into the pathogenesis of CML by BCR-ABL and open a window for developing novel therapeutic strategies for this disease.Key words: BCR-ABL, subcellular localization, stress granule.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1247/csf.19033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.19033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

致癌性酪氨酸激酶BCR-ABL激活多种信号通路,在慢性髓性白血病(CML)的发病机制中起致病作用;然而,这种嵌合蛋白的亚细胞分布仍然存在争议。在这里,我们报道BCR-ABL定位于应激颗粒,其颗粒定位有助于BCR-ABL依赖性白血病的发生。bcr - abl阳性颗粒不与任何膜结合细胞器标记物共定位,但与RNA颗粒成分HSP90a共定位。这些颗粒的数量随着thapsigargin的处理而增加,证实了这些颗粒是应激颗粒。鉴于用ABL激酶抑制剂伊马替尼治疗和消除BCR-ABL的n端区域可消除颗粒形成,因此颗粒形成需要激酶活性和卷曲-卷曲结构域。野生型BCR-ABL修复了il -3缺失的Ba/F3细胞的生长缺陷,而缺乏n端区域的突变型BCR-ABL则无法修复。此外,n端缺失突变体的强制四聚化不能恢复生长缺陷,这表明通过其n端形成颗粒,而不是四聚化,对bcr - abl依赖性的致癌性至关重要。我们的研究结果共同为BCR-ABL的CML发病机制提供了新的见解,并为开发新的治疗策略打开了一扇窗。关键词:BCR-ABL,亚细胞定位,应力颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localization of BCR-ABL to Stress Granules Contributes to Its Oncogenic Function.
The oncogenic tyrosine kinase BCR-ABL activates a variety of signaling pathways and plays a causative role in the pathogenesis of chronic myelogenous leukemia (CML); however, the subcellular distribution of this chimeric protein remains controversial. Here, we report that BCR-ABL is localized to stress granules and that its granular localization contributes to BCR-ABL-dependent leukemogenesis. BCR-ABL-positive granules were not colocalized with any markers for membrane-bound organelles but were colocalized with HSP90a, a component of RNA granules. The number of such granules increased with thapsigargin treatment, confirming that the granules were stress granules. Given that treatment with the ABL kinase inhibitor imatinib and elimination of the N-terminal region of BCR-ABL abolished granule formation, kinase activity and the coiled-coil domain are required for granule formation. Whereas wild-type BCR-ABL rescued the growth defect in IL-3-depleted Ba/F3 cells, mutant BCR-ABL lacking the N-terminal region failed to do so. Moreover, forced tetramerization of the N-terminus-deleted mutant could not restore the growth defect, indicating that granule formation, but not tetramerization, through its N-terminus is critical for BCR-ABL-dependent oncogenicity. Our findings together provide new insights into the pathogenesis of CML by BCR-ABL and open a window for developing novel therapeutic strategies for this disease.Key words: BCR-ABL, subcellular localization, stress granule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信