Arianna Lupattelli , Diana Salciarini , Francesco Cecinato , Manolis Veveakis , Teresa Maria Bodas Freitas , Peter John Bourne-Webb
{"title":"热活化桩中土-结构界面特性的温度依赖性研究进展","authors":"Arianna Lupattelli , Diana Salciarini , Francesco Cecinato , Manolis Veveakis , Teresa Maria Bodas Freitas , Peter John Bourne-Webb","doi":"10.1016/j.gete.2023.100521","DOIUrl":null,"url":null,"abstract":"<div><p>Thermally-activated (TA) piles are cost-effective technologies with the dual role of transferring structural loads to the ground while exchanging heat with the surrounding soil as part of shallow geothermal energy systems. As TA piles are subjected to both thermal and mechanical loads, the behaviour on the soil-structure interface is particularly complex and is key for the analysis and design of these structures. The present paper aims to review the current state of knowledge regarding the thermal dependency of soil-structure interface behaviour and provide an overview of experimental results obtained from non-isothermal tests investigating soil and soil-structure interface behaviour. This overview includes comparison of the different experimental equipment and procedures, soil types, initial soil state overconsolidation ratio (degree of consolidation or relative density) and thermal loadings. It was found that it is not straightforward to reach a unique interpretation regarding possible variation of the soil-structure interface behaviour at different temperatures: the framework of the experimental evidence is very complex due to the wide variation in testing conditions. Therefore, it was not possible to compare the studies like-for-like, leading to an apparently ambiguous interpretation of the results. Overall, the consensus across this and other studies is that the potential variation of interface resistance with temperature typically appears to be limited and not very significant.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"37 ","pages":"Article 100521"},"PeriodicalIF":3.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380823000904/pdfft?md5=b949a012f02bfd07a87a4f755837bd2e&pid=1-s2.0-S2352380823000904-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Temperature dependence of soil-structure interface behaviour in the context of thermally-activated piles: A review\",\"authors\":\"Arianna Lupattelli , Diana Salciarini , Francesco Cecinato , Manolis Veveakis , Teresa Maria Bodas Freitas , Peter John Bourne-Webb\",\"doi\":\"10.1016/j.gete.2023.100521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermally-activated (TA) piles are cost-effective technologies with the dual role of transferring structural loads to the ground while exchanging heat with the surrounding soil as part of shallow geothermal energy systems. As TA piles are subjected to both thermal and mechanical loads, the behaviour on the soil-structure interface is particularly complex and is key for the analysis and design of these structures. The present paper aims to review the current state of knowledge regarding the thermal dependency of soil-structure interface behaviour and provide an overview of experimental results obtained from non-isothermal tests investigating soil and soil-structure interface behaviour. This overview includes comparison of the different experimental equipment and procedures, soil types, initial soil state overconsolidation ratio (degree of consolidation or relative density) and thermal loadings. It was found that it is not straightforward to reach a unique interpretation regarding possible variation of the soil-structure interface behaviour at different temperatures: the framework of the experimental evidence is very complex due to the wide variation in testing conditions. Therefore, it was not possible to compare the studies like-for-like, leading to an apparently ambiguous interpretation of the results. Overall, the consensus across this and other studies is that the potential variation of interface resistance with temperature typically appears to be limited and not very significant.</p></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"37 \",\"pages\":\"Article 100521\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352380823000904/pdfft?md5=b949a012f02bfd07a87a4f755837bd2e&pid=1-s2.0-S2352380823000904-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380823000904\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380823000904","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Temperature dependence of soil-structure interface behaviour in the context of thermally-activated piles: A review
Thermally-activated (TA) piles are cost-effective technologies with the dual role of transferring structural loads to the ground while exchanging heat with the surrounding soil as part of shallow geothermal energy systems. As TA piles are subjected to both thermal and mechanical loads, the behaviour on the soil-structure interface is particularly complex and is key for the analysis and design of these structures. The present paper aims to review the current state of knowledge regarding the thermal dependency of soil-structure interface behaviour and provide an overview of experimental results obtained from non-isothermal tests investigating soil and soil-structure interface behaviour. This overview includes comparison of the different experimental equipment and procedures, soil types, initial soil state overconsolidation ratio (degree of consolidation or relative density) and thermal loadings. It was found that it is not straightforward to reach a unique interpretation regarding possible variation of the soil-structure interface behaviour at different temperatures: the framework of the experimental evidence is very complex due to the wide variation in testing conditions. Therefore, it was not possible to compare the studies like-for-like, leading to an apparently ambiguous interpretation of the results. Overall, the consensus across this and other studies is that the potential variation of interface resistance with temperature typically appears to be limited and not very significant.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.